Azure Monitor 和 Splunk 集成

强大的性能和简易的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Azure Monitor 和 InfluxDB

5B+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

1B+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 借助 InfluxDB,第一的时间序列平台,它旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

使用 Azure Monitor API 从 Azure 资源收集指标。

此输出插件有助于将 Telegraf 收集的指标通过 HTTP Event Collector 直接流式传输到 Splunk,从而轻松与 Splunk 强大的分析平台集成。

集成详情

Azure Monitor

Azure Monitor Telegraf 插件专为使用 Azure Monitor API 从各种 Azure 资源收集指标而设计。 用户必须提供特定的凭据,例如 client_idclient_secrettenant_idsubscription_id,以进行身份验证并访问其 Azure 资源。 此外,该插件还支持从单个资源和资源组或订阅中收集指标的功能,从而实现灵活且可扩展的指标收集,以满足用户需求。 此插件非常适合利用 Azure 云基础设施的组织,可深入了解资源性能和长期利用率,从而促进云资源的积极管理和优化。

Splunk

使用 Telegraf 可以轻松地从许多不同的来源收集和聚合指标,并将它们发送到 Splunk。 通过使用 HTTP 输出插件并结合专门的 Splunk 指标序列化器,此配置可确保将数据高效地摄取到 Splunk 的指标索引中。 HEC 是 Splunk 提供的一种高级机制,旨在通过 HTTP 或 HTTPS 可靠地大规模收集数据,为安全性、监视和分析工作负载提供关键功能。 Telegraf 与 Splunk HEC 的集成通过利用标准 HTTP 协议、内置身份验证和结构化数据序列化来简化操作,从而优化指标摄取并实现即时可操作的见解。

配置

Azure Monitor

# Gather Azure resources metrics from Azure Monitor API
[[inputs.azure_monitor]]
  # can be found under Overview->Essentials in the Azure portal for your application/service
  subscription_id = "<>"
  # can be obtained by registering an application under Azure Active Directory
  client_id = "<>"
  # can be obtained by registering an application under Azure Active Directory.
  # If not specified Default Azure Credentials chain will be attempted:
  # - Environment credentials (AZURE_*)
  # - Workload Identity in Kubernetes cluster
  # - Managed Identity
  # - Azure CLI auth
  # - Developer Azure CLI auth
  client_secret = "<>"
  # can be found under Azure Active Directory->Properties
  tenant_id = "<>"
  # Define the optional Azure cloud option e.g. AzureChina, AzureGovernment or AzurePublic. The default is AzurePublic.
  # cloud_option = "AzurePublic"

  # resource target #1 to collect metrics from
  [[inputs.azure_monitor.resource_target]]
    # can be found under Overview->Essentials->JSON View in the Azure portal for your application/service
    # must start with 'resourceGroups/...' ('/subscriptions/xxxxxxxx-xxxx-xxxx-xxx-xxxxxxxxxxxx'
    # must be removed from the beginning of Resource ID property value)
    resource_id = "<>"
    # the metric names to collect
    # leave the array empty to use all metrics available to this resource
    metrics = [ "<>", "<>" ]
    # metrics aggregation type value to collect
    # can be 'Total', 'Count', 'Average', 'Minimum', 'Maximum'
    # leave the array empty to collect all aggregation types values for each metric
    aggregations = [ "<>", "<>" ]

  # resource target #2 to collect metrics from
  [[inputs.azure_monitor.resource_target]]
    resource_id = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]

  # resource group target #1 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.resource_group_target]]
    # the resource group name
    resource_group = "<>"

    # defines the resources to collect metrics from
    [[inputs.azure_monitor.resource_group_target.resource]]
      # the resource type
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

    # defines the resources to collect metrics from
    [[inputs.azure_monitor.resource_group_target.resource]]
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

  # resource group target #2 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.resource_group_target]]
    resource_group = "<>"

    [[inputs.azure_monitor.resource_group_target.resource]]
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

  # subscription target #1 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.subscription_target]]
    resource_type = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]

  # subscription target #2 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.subscription_target]]
    resource_type = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]
</code></pre>

Splunk

[[outputs.http]]
  ## Splunk HTTP Event Collector endpoint
  url = "https://splunk.example.com:8088/services/collector"

  ## HTTP method to use
  method = "POST"

  ## Splunk authentication token
  headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}

  ## Serializer for formatting metrics specifically for Splunk
  data_format = "splunkmetric"

  ## Optional parameters
  # timeout = "5s"
  # insecure_skip_verify = false
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"

输入和输出集成示例

Azure Monitor

  1. 动态资源监控: 使用 Azure Monitor 插件根据特定标准(如标签或资源类型)动态收集 Azure 资源的指标。 组织可以自动化加载和卸载资源指标的过程,从而根据资源利用率模式更好地跟踪和优化性能。

  2. 多云监控集成: 使用集中式监控解决方案,将从 Azure Monitor 收集的指标与其他云提供商集成。 这使组织能够查看和分析跨多个云部署的性能数据,从而提供资源性能和成本的整体概览,并简化操作。

  3. 异常检测和警报: 利用通过 Azure Monitor 插件收集的指标,并结合机器学习算法来检测资源利用率中的异常。 通过建立基准性能指标并自动警报偏差,组织可以减轻风险并在性能问题升级之前解决它们。

  4. 历史性能分析: 通过将数据输入到数据仓库解决方案中,使用收集到的 Azure 指标进行历史分析。 这使组织能够跟踪随时间变化的趋势,从而根据历史性能数据进行详细的报告和决策。

Splunk

  1. 实时安全分析: 利用此插件将来自各种应用程序的安全相关指标实时流式传输到 Splunk 中。 组织可以通过关联跨系统的数据流来立即检测威胁,从而显着缩短检测和响应时间。

  2. 多云基础设施监控: 集成 Telegraf 以将来自多云环境的指标直接整合到 Splunk 中,从而实现全面的可见性和运营智能。 这种统一的监控使团队能够快速检测性能问题并简化云资源管理。

  3. 动态容量规划: 部署插件以将来自容器编排平台(如 Kubernetes)的资源指标持续推送到 Splunk 中。 利用 Splunk 的分析功能,团队可以自动化预测性扩展和资源分配,避免资源瓶颈并最大限度地降低成本。

  4. 自动化事件响应工作流程: 将此插件与 Splunk 的警报系统结合使用,以创建自动化事件响应工作流程。 Telegraf 收集的指标会触发实时警报和自动化修复脚本,从而确保快速解决问题并保持高系统可用性。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 借助 InfluxDB,第一的时间序列平台,它旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成