目录
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 使用 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
使用 Azure Monitor API 从 Azure 资源收集指标。
Redis 插件使用户能够将 Telegraf 收集的指标直接发送到 Redis。 此集成非常适合需要强大的时间序列数据存储和分析的应用程序。
集成详情
Azure Monitor
Azure Monitor Telegraf 插件专为使用 Azure Monitor API 从各种 Azure 资源收集指标而设计。 用户必须提供特定的凭据,例如 client_id
、client_secret
、tenant_id
和 subscription_id
,以进行身份验证并获得对其 Azure 资源的访问权限。 此外,该插件还支持从单个资源以及资源组或订阅收集指标的功能,从而可以根据用户需求灵活且可扩展地收集指标。 此插件非常适合利用 Azure 云基础设施的组织,可以深入了解资源性能和随时间推移的利用率,从而促进云资源的积极管理和优化。
Redis
Redis Telegraf 插件旨在将指标写入 RedisTimeSeries,这是一个用于时间序列数据的专用 Redis 数据库模块。 此插件有助于 Telegraf 与 RedisTimeSeries 的集成,从而可以高效地存储和检索带时间戳的数据。 借助 RedisTimeSeries,用户可以利用管理时间序列数据的增强功能,包括聚合视图和范围查询。 该插件提供了各种配置选项,以实现安全连接到 Redis 数据库所需的灵活性,包括对身份验证、超时、数据类型转换和 TLS 配置的支持。 底层技术利用了 Redis 的效率和可扩展性,使其成为高容量指标环境的绝佳选择,在这些环境中,实时处理至关重要。
配置
Azure Monitor
# Gather Azure resources metrics from Azure Monitor API
[[inputs.azure_monitor]]
# can be found under Overview->Essentials in the Azure portal for your application/service
subscription_id = "<>"
# can be obtained by registering an application under Azure Active Directory
client_id = "<>"
# can be obtained by registering an application under Azure Active Directory.
# If not specified Default Azure Credentials chain will be attempted:
# - Environment credentials (AZURE_*)
# - Workload Identity in Kubernetes cluster
# - Managed Identity
# - Azure CLI auth
# - Developer Azure CLI auth
client_secret = "<>"
# can be found under Azure Active Directory->Properties
tenant_id = "<>"
# Define the optional Azure cloud option e.g. AzureChina, AzureGovernment or AzurePublic. The default is AzurePublic.
# cloud_option = "AzurePublic"
# resource target #1 to collect metrics from
[[inputs.azure_monitor.resource_target]]
# can be found under Overview->Essentials->JSON View in the Azure portal for your application/service
# must start with 'resourceGroups/...' ('/subscriptions/xxxxxxxx-xxxx-xxxx-xxx-xxxxxxxxxxxx'
# must be removed from the beginning of Resource ID property value)
resource_id = "<>"
# the metric names to collect
# leave the array empty to use all metrics available to this resource
metrics = [ "<>", "<>" ]
# metrics aggregation type value to collect
# can be 'Total', 'Count', 'Average', 'Minimum', 'Maximum'
# leave the array empty to collect all aggregation types values for each metric
aggregations = [ "<>", "<>" ]
# resource target #2 to collect metrics from
[[inputs.azure_monitor.resource_target]]
resource_id = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# resource group target #1 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.resource_group_target]]
# the resource group name
resource_group = "<>"
# defines the resources to collect metrics from
[[inputs.azure_monitor.resource_group_target.resource]]
# the resource type
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# defines the resources to collect metrics from
[[inputs.azure_monitor.resource_group_target.resource]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# resource group target #2 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.resource_group_target]]
resource_group = "<>"
[[inputs.azure_monitor.resource_group_target.resource]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# subscription target #1 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.subscription_target]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# subscription target #2 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.subscription_target]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
</code></pre>
Redis
[[outputs.redistimeseries]]
## The address of the RedisTimeSeries server.
address = "127.0.0.1:6379"
## Redis ACL credentials
# username = ""
# password = ""
# database = 0
## Timeout for operations such as ping or sending metrics
# timeout = "10s"
## Enable attempt to convert string fields to numeric values
## If "false" or in case the string value cannot be converted the string
## field will be dropped.
# convert_string_fields = true
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
# insecure_skip_verify = false
输入和输出集成示例
Azure Monitor
-
动态资源监控:使用 Azure Monitor 插件根据特定条件(如标签或资源类型)动态收集 Azure 资源的指标。 组织可以自动化加载和卸载资源指标的过程,从而根据资源利用率模式更好地跟踪和优化性能。
-
多云监控集成:将从 Azure Monitor 收集的指标与其他云提供商集成,使用集中式监控解决方案。 这使组织可以查看和分析跨多个云部署的性能数据,从而全面了解资源性能和成本,并简化运营。
-
异常检测和警报:结合机器学习算法,利用通过 Azure Monitor 插件收集的指标来检测资源利用率的异常情况。 通过建立基线性能指标并自动警报偏差,组织可以在风险升级和性能问题发生之前缓解风险并解决性能问题。
-
历史性能分析:通过将数据输入数据仓库解决方案,使用收集的 Azure 指标进行历史分析。 这使组织可以跟踪随时间推移的趋势,从而可以根据历史性能数据进行详细报告和决策。
Redis
-
监控物联网传感器数据:利用 Redis Telegraf 插件实时收集和存储来自物联网传感器的数据。 通过将插件连接到 RedisTimeSeries 数据库,用户可以分析温度、湿度或其他环境因素的趋势。 有效查询历史传感器数据的能力将有助于预测性维护并帮助进行资源管理。
-
金融市场数据聚合:使用此插件跟踪和存储来自各种来源的时间敏感的金融数据。 通过将指标发送到 Redis,金融机构可以聚合和分析市场趋势或随时间推移的价格变化,从而为他们提供从可靠的时间序列分析中获得的可操作的见解。
-
应用程序性能监控 (APM):实施 Redis 插件以收集应用程序性能指标,例如响应时间和 CPU 使用率。 用户可以使用 RedisTimeSeries 可视化其应用程序随时间推移的性能,从而使他们能够快速识别瓶颈并优化资源分配。
-
能源消耗跟踪:利用此插件随时间推移监控建筑物中的能源使用情况。 通过与智能电表集成并将数据发送到 RedisTimeSeries,市政当局或企业可以分析能源消耗模式,从而帮助实施节能措施和可持续性实践。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展
收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 使用 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法