目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。使用 InfluxDB,这是#1 的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
使用 Azure Monitor API 从 Azure 资源收集指标。
MongoDB Telegraf 插件使用户能够将指标发送到 MongoDB 数据库,自动管理时间序列集合。
集成详细信息
Azure Monitor
Azure Monitor Telegraf 插件专门设计用于使用 Azure Monitor API 从各种 Azure 资源收集指标。用户必须提供特定的凭据,例如 client_id
、client_secret
、tenant_id
和 subscription_id
,才能进行身份验证并访问其 Azure 资源。此外,该插件还支持从单个资源和资源组或订阅收集指标的功能,从而可以根据用户需求灵活且可扩展地收集指标。此插件非常适合利用 Azure 云基础设施的组织,提供对资源性能和随时间推移的利用率的关键见解,从而促进云资源的积极管理和优化。
MongoDB
此插件将指标发送到 MongoDB,并与其时间序列功能无缝集成,从而允许在时间序列集合尚不存在时自动创建为时间序列集合。它需要 MongoDB 5.0 或更高版本才能使用时间序列集合功能,这对于高效存储和查询基于时间的数据至关重要。此插件通过确保所有相关指标都正确存储和组织在 MongoDB 中来增强监控功能,从而为用户提供利用 MongoDB 强大的查询和聚合功能进行时间序列分析的能力。
配置
Azure Monitor
# Gather Azure resources metrics from Azure Monitor API
[[inputs.azure_monitor]]
# can be found under Overview->Essentials in the Azure portal for your application/service
subscription_id = "<>"
# can be obtained by registering an application under Azure Active Directory
client_id = "<>"
# can be obtained by registering an application under Azure Active Directory.
# If not specified Default Azure Credentials chain will be attempted:
# - Environment credentials (AZURE_*)
# - Workload Identity in Kubernetes cluster
# - Managed Identity
# - Azure CLI auth
# - Developer Azure CLI auth
client_secret = "<>"
# can be found under Azure Active Directory->Properties
tenant_id = "<>"
# Define the optional Azure cloud option e.g. AzureChina, AzureGovernment or AzurePublic. The default is AzurePublic.
# cloud_option = "AzurePublic"
# resource target #1 to collect metrics from
[[inputs.azure_monitor.resource_target]]
# can be found under Overview->Essentials->JSON View in the Azure portal for your application/service
# must start with 'resourceGroups/...' ('/subscriptions/xxxxxxxx-xxxx-xxxx-xxx-xxxxxxxxxxxx'
# must be removed from the beginning of Resource ID property value)
resource_id = "<>"
# the metric names to collect
# leave the array empty to use all metrics available to this resource
metrics = [ "<>", "<>" ]
# metrics aggregation type value to collect
# can be 'Total', 'Count', 'Average', 'Minimum', 'Maximum'
# leave the array empty to collect all aggregation types values for each metric
aggregations = [ "<>", "<>" ]
# resource target #2 to collect metrics from
[[inputs.azure_monitor.resource_target]]
resource_id = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# resource group target #1 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.resource_group_target]]
# the resource group name
resource_group = "<>"
# defines the resources to collect metrics from
[[inputs.azure_monitor.resource_group_target.resource]]
# the resource type
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# defines the resources to collect metrics from
[[inputs.azure_monitor.resource_group_target.resource]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# resource group target #2 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.resource_group_target]]
resource_group = "<>"
[[inputs.azure_monitor.resource_group_target.resource]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# subscription target #1 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.subscription_target]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
# subscription target #2 to collect metrics from resources under it with resource type
[[inputs.azure_monitor.subscription_target]]
resource_type = "<>"
metrics = [ "<>", "<>" ]
aggregations = [ "<>", "<>" ]
</code></pre>
MongoDB
[[outputs.mongodb]]
# connection string examples for mongodb
dsn = "mongodb://localhost:27017"
# dsn = "mongodb://mongod1:27017,mongod2:27017,mongod3:27017/admin&replicaSet=myReplSet&w=1"
# overrides serverSelectionTimeoutMS in dsn if set
# timeout = "30s"
# default authentication, optional
# authentication = "NONE"
# for SCRAM-SHA-256 authentication
# authentication = "SCRAM"
# username = "root"
# password = "***"
# for x509 certificate authentication
# authentication = "X509"
# tls_ca = "ca.pem"
# tls_key = "client.pem"
# # tls_key_pwd = "changeme" # required for encrypted tls_key
# insecure_skip_verify = false
# database to store measurements and time series collections
# database = "telegraf"
# granularity can be seconds, minutes, or hours.
# configuring this value will be based on your input collection frequency.
# see https://docs.mongodb.com/manual/core/timeseries-collections/#create-a-time-series-collection
# granularity = "seconds"
# optionally set a TTL to automatically expire documents from the measurement collections.
# ttl = "360h"
输入和输出集成示例
Azure Monitor
-
动态资源监控:使用 Azure Monitor 插件根据特定条件(如标签或资源类型)动态收集 Azure 资源的指标。组织可以自动化加载和卸载资源指标的过程,从而根据资源利用率模式实现更好的性能跟踪和优化。
-
多云监控集成:将从 Azure Monitor 收集的指标与其他云提供商集成,使用集中式监控解决方案。这使组织能够查看和分析跨多个云部署的性能数据,从而全面了解资源性能和成本,并简化运营。
-
异常检测和警报:结合机器学习算法,利用通过 Azure Monitor 插件收集的指标来检测资源利用率的异常情况。通过建立基线性能指标并自动发出偏差警报,组织可以在风险升级之前减轻风险并解决性能问题。
-
历史性能分析:通过将收集的 Azure 指标数据馈送到数据仓库解决方案中,从而进行历史分析。这使组织能够跟踪随时间推移的趋势,从而根据历史性能数据进行详细的报告和决策。
MongoDB
-
物联网设备的 MongoDB 动态日志记录:使用此插件实时收集和存储来自大量物联网设备的指标。通过将设备日志直接发送到 MongoDB,您可以创建一个集中式数据库,该数据库允许轻松访问和查询运行状况指标和性能数据,从而根据历史趋势实现主动维护和故障排除。
-
Web 流量的时间序列分析:使用 MongoDB Telegraf 插件收集和分析随时间推移的 Web 流量指标。此应用程序可以帮助您了解高峰使用时间、用户交互和行为模式,从而指导营销策略和基础设施扩展决策,以改善用户体验。
-
自动化监控和警报系统:将 MongoDB 插件集成到跟踪应用程序性能指标的自动化监控系统中。借助时间序列集合,您可以根据特定阈值设置警报,使您的团队能够在潜在问题影响用户之前做出响应。这种主动管理可以提高服务可靠性和整体性能。
-
指标存储中的数据保留和 TTL 管理:利用 MongoDB 集合中文档的 TTL 功能自动过期过时的指标。这对于仅最近的性能数据相关的环境特别有用,可以防止您的 MongoDB 数据库因旧指标而变得杂乱,并确保高效的数据管理。
反馈
感谢您成为我们社区的一份子!如果您有任何一般反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。使用 InfluxDB,这是#1 的时间序列平台,旨在与 Telegraf 一起扩展。
查看入门方法