Azure Monitor 和 MariaDB 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Azure Monitor 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大性能,无限扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它都更有价值。 借助 InfluxDB,第一时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

使用 Azure Monitor API 从 Azure 资源收集指标。

此插件使用参数化的 SQL INSERT 语句将来自 Telegraf 的指标直接写入 MariaDB,从而提供了一种将指标存储在结构化关系表中的灵活方法。

集成详情

Azure Monitor

Azure Monitor Telegraf 插件专门设计用于使用 Azure Monitor API 从各种 Azure 资源收集指标。 用户必须提供特定的凭据,例如 client_idclient_secrettenant_idsubscription_id,才能进行身份验证并访问其 Azure 资源。 此外,该插件还支持从单个资源和资源组或订阅收集指标的功能,从而可以根据用户需求灵活且可扩展地收集指标。 此插件非常适合利用 Azure 云基础设施的组织,可以深入了解资源性能和长期利用率,从而促进云资源的积极管理和优化。

MariaDB

Telegraf 中的 SQL 输出插件可以通过执行参数化的 SQL 语句,将指标直接写入与 SQL 兼容的数据库(如 MariaDB)。 通过支持 MySQL 驱动程序,该插件可以与 MariaDB 无缝集成,以实现可靠、结构化的指标存储。 此设置非常适合喜欢基于 SQL 的分析或希望将指标与业务数据一起存储以进行统一查询的用户。 MariaDB 是 MySQL 的一个社区开发的、企业级的分支,强调性能、安全性 和开放性。 该插件支持将时序指标插入自定义模式,从而可以使用 SQL 连接器灵活地进行分析并与 Metabase 或 Grafana 等 BI 工具集成。

配置

Azure Monitor

# Gather Azure resources metrics from Azure Monitor API
[[inputs.azure_monitor]]
  # can be found under Overview->Essentials in the Azure portal for your application/service
  subscription_id = "<>"
  # can be obtained by registering an application under Azure Active Directory
  client_id = "<>"
  # can be obtained by registering an application under Azure Active Directory.
  # If not specified Default Azure Credentials chain will be attempted:
  # - Environment credentials (AZURE_*)
  # - Workload Identity in Kubernetes cluster
  # - Managed Identity
  # - Azure CLI auth
  # - Developer Azure CLI auth
  client_secret = "<>"
  # can be found under Azure Active Directory->Properties
  tenant_id = "<>"
  # Define the optional Azure cloud option e.g. AzureChina, AzureGovernment or AzurePublic. The default is AzurePublic.
  # cloud_option = "AzurePublic"

  # resource target #1 to collect metrics from
  [[inputs.azure_monitor.resource_target]]
    # can be found under Overview->Essentials->JSON View in the Azure portal for your application/service
    # must start with 'resourceGroups/...' ('/subscriptions/xxxxxxxx-xxxx-xxxx-xxx-xxxxxxxxxxxx'
    # must be removed from the beginning of Resource ID property value)
    resource_id = "<>"
    # the metric names to collect
    # leave the array empty to use all metrics available to this resource
    metrics = [ "<>", "<>" ]
    # metrics aggregation type value to collect
    # can be 'Total', 'Count', 'Average', 'Minimum', 'Maximum'
    # leave the array empty to collect all aggregation types values for each metric
    aggregations = [ "<>", "<>" ]

  # resource target #2 to collect metrics from
  [[inputs.azure_monitor.resource_target]]
    resource_id = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]

  # resource group target #1 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.resource_group_target]]
    # the resource group name
    resource_group = "<>"

    # defines the resources to collect metrics from
    [[inputs.azure_monitor.resource_group_target.resource]]
      # the resource type
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

    # defines the resources to collect metrics from
    [[inputs.azure_monitor.resource_group_target.resource]]
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

  # resource group target #2 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.resource_group_target]]
    resource_group = "<>"

    [[inputs.azure_monitor.resource_group_target.resource]]
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

  # subscription target #1 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.subscription_target]]
    resource_type = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]

  # subscription target #2 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.subscription_target]]
    resource_type = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]
</code></pre>

MariaDB

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ##  sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
  driver = "mysql"

  ## Data source name
  ## The format of the data source name is different for each database driver.
  ## See the plugin readme for details.
  data_source_name = "username:password@tcp(host:port)/dbname"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS} - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE}({COLUMNS})"

  ## SQL INSERT statement with placeholders. Telegraf will substitute values at runtime.
  ## table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - tablename as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL
  init_sql = "SET sql_mode='ANSI_QUOTES';"

  ## Maximum amount of time a connection may be idle. "0s" means connections are
  ## never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections
  ## are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of the
  ## table

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on
  ## the right are the data types Telegraf will use when sending to a database.
  ##
  ## The database values used must be data types the destination database
  ## understands. It is up to the user to ensure that the selected data type is
  ## available in the database they are using. Refer to your database
  ## documentation for what data types are available and supported.
  #[outputs.sql.convert]
  #  integer              = "INT"
  #  real                 = "DOUBLE"
  #  text                 = "TEXT"
  #  timestamp            = "TIMESTAMP"
  #  defaultvalue         = "TEXT"
  #  unsigned             = "UNSIGNED"
  #  bool                 = "BOOL"
  #  ## This setting controls the behavior of the unsigned value. By default the
  #  ## setting will take the integer value and append the unsigned value to it. The other
  #  ## option is "literal", which will use the actual value the user provides to
  #  ## the unsigned option. This is useful for a database like ClickHouse where
  #  ## the unsigned value should use a value like "uint64".
  #  # conversion_style = "unsigned_suffix"

输入和输出集成示例

Azure Monitor

  1. 动态资源监控:使用 Azure Monitor 插件根据特定条件(如标签或资源类型)动态收集 Azure 资源的指标。 组织可以自动化加载和卸载资源指标的过程,从而根据资源利用率模式更好地跟踪和优化性能。

  2. 多云监控集成:使用集中式监控解决方案,将从 Azure Monitor 收集的指标与其他云提供商集成。 这使组织可以查看和分析跨多个云部署的性能数据,从而全面了解资源性能和成本,并简化运营。

  3. 异常检测和警报:利用通过 Azure Monitor 插件收集的指标以及机器学习算法来检测资源利用率异常。 通过建立基线性能指标并在出现偏差时自动发出警报,组织可以降低风险并在性能问题升级之前解决这些问题。

  4. 历史性能分析:通过将数据馈送到数据仓库解决方案中,使用收集的 Azure 指标进行历史分析。 这使组织可以跟踪长期趋势,从而可以根据历史性能数据进行详细报告和决策。

MariaDB

  1. 商业智能集成:将应用程序性能指标直接存储到 MariaDB 中,并将其连接到 Metabase 或 Apache Superset 等 BI 工具。 此设置允许将运营数据与业务 KPI 混合,以实现统一的仪表板,从而提高跨部门的可见性。

  2. 使用历史指标进行合规性报告:使用此插件将指标记录到 MariaDB 中,以用于审计和合规性用例。 关系模型可以精确查询带有时间戳条目的过去性能指标,从而支持监管文档。

  3. 基于 SQL 逻辑的自定义警报:将指标插入 MariaDB 并使用自定义 SQL 查询来定义警报阈值或条件。 结合 cron 作业或计划脚本,这可以实现传统指标平台无法实现的高级警报工作流程。

  4. 物联网传感器指标存储:通过 Telegraf 从物联网设备收集传感器数据,并使用规范化模式将其存储在 MariaDB 中。 这种方法具有成本效益,并且可以与现有的基于 SQL 的系统很好地集成,以进行实时或历史分析。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大性能,无限扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它都更有价值。 借助 InfluxDB,第一时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供与 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成