Azure Monitor 和 Clickhouse 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是由 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。 为了优化查询和压缩、高速摄取和高可用性,您可能需要考虑 Azure Monitor 和 InfluxDB。

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 使用 InfluxDB,第一时序平台,旨在与 Telegraf 一起扩展。

了解入门方法

输入和输出集成概述

使用 Azure Monitor API 从 Azure 资源收集指标。

Telegraf 的 SQL 插件使用简单的表模式和动态列生成将收集的指标发送到 SQL 数据库。 当配置为 ClickHouse 时,它会调整 DSN 格式和类型转换设置,以确保无缝数据集成。

集成详情

Azure Monitor

Azure Monitor Telegraf 插件专门设计用于使用 Azure Monitor API 从各种 Azure 资源收集指标。 用户必须提供特定的凭据,例如 `client_id`、`client_secret`、`tenant_id` 和 `subscription_id`,以进行身份验证并访问其 Azure 资源。 此外,该插件支持从单个资源和资源组或订阅收集指标的功能,从而可以根据用户需求灵活且可扩展地收集指标。 此插件非常适合利用 Azure 云基础设施的组织,可以深入了解资源随时间的性能和利用率,从而促进云资源的积极管理和优化。

Clickhouse

Telegraf 的 SQL 插件旨在通过基于传入指标动态创建表和列,将指标数据写入 SQL 数据库。 当配置为 ClickHouse 时,它使用 clickhouse-go v1.5.4 驱动程序,该驱动程序采用唯一的 DSN 格式和一组专门的类型转换规则,将 Telegraf 的数据类型直接映射到 ClickHouse 的原生类型。 这种方法确保了在高吞吐量环境中的最佳存储和检索性能,使其非常适合实时分析和大规模数据仓库。 动态模式创建和精确的类型映射实现了详细的时序数据日志记录,这对于监控现代分布式系统至关重要。

配置

Azure Monitor

# Gather Azure resources metrics from Azure Monitor API
[[inputs.azure_monitor]]
  # can be found under Overview->Essentials in the Azure portal for your application/service
  subscription_id = "<>"
  # can be obtained by registering an application under Azure Active Directory
  client_id = "<>"
  # can be obtained by registering an application under Azure Active Directory.
  # If not specified Default Azure Credentials chain will be attempted:
  # - Environment credentials (AZURE_*)
  # - Workload Identity in Kubernetes cluster
  # - Managed Identity
  # - Azure CLI auth
  # - Developer Azure CLI auth
  client_secret = "<>"
  # can be found under Azure Active Directory->Properties
  tenant_id = "<>"
  # Define the optional Azure cloud option e.g. AzureChina, AzureGovernment or AzurePublic. The default is AzurePublic.
  # cloud_option = "AzurePublic"

  # resource target #1 to collect metrics from
  [[inputs.azure_monitor.resource_target]]
    # can be found under Overview->Essentials->JSON View in the Azure portal for your application/service
    # must start with 'resourceGroups/...' ('/subscriptions/xxxxxxxx-xxxx-xxxx-xxx-xxxxxxxxxxxx'
    # must be removed from the beginning of Resource ID property value)
    resource_id = "<>"
    # the metric names to collect
    # leave the array empty to use all metrics available to this resource
    metrics = [ "<>", "<>" ]
    # metrics aggregation type value to collect
    # can be 'Total', 'Count', 'Average', 'Minimum', 'Maximum'
    # leave the array empty to collect all aggregation types values for each metric
    aggregations = [ "<>", "<>" ]

  # resource target #2 to collect metrics from
  [[inputs.azure_monitor.resource_target]]
    resource_id = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]

  # resource group target #1 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.resource_group_target]]
    # the resource group name
    resource_group = "<>"

    # defines the resources to collect metrics from
    [[inputs.azure_monitor.resource_group_target.resource]]
      # the resource type
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

    # defines the resources to collect metrics from
    [[inputs.azure_monitor.resource_group_target.resource]]
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

  # resource group target #2 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.resource_group_target]]
    resource_group = "<>"

    [[inputs.azure_monitor.resource_group_target.resource]]
      resource_type = "<>"
      metrics = [ "<>", "<>" ]
      aggregations = [ "<>", "<>" ]

  # subscription target #1 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.subscription_target]]
    resource_type = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]

  # subscription target #2 to collect metrics from resources under it with resource type
  [[inputs.azure_monitor.subscription_target]]
    resource_type = "<>"
    metrics = [ "<>", "<>" ]
    aggregations = [ "<>", "<>" ]
</code></pre>

Clickhouse

[[outputs.sql]]
  ## Database driver
  ## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
  driver = "clickhouse"

  ## Data source name
  ## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
  ## Example DSN: "tcp://localhost:9000?debug=true"
  data_source_name = "tcp://localhost:9000?debug=true"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion for ClickHouse.
  ## The conversion maps Telegraf metric types to ClickHouse native data types.
  [outputs.sql.convert]
    conversion_style = "literal"
    integer          = "Int64"
    text             = "String"
    timestamp        = "DateTime"
    defaultvalue     = "String"
    unsigned         = "UInt64"
    bool             = "UInt8"
    real             = "Float64"

输入和输出集成示例

Azure Monitor

  1. 动态资源监控: 使用 Azure Monitor 插件根据特定条件(如标签或资源类型)动态收集 Azure 资源的指标。 组织可以自动化加载和卸载资源指标的过程,从而根据资源利用率模式更好地跟踪和优化性能。

  2. 多云监控集成: 使用集中式监控解决方案,将从 Azure Monitor 收集的指标与其他云提供商集成。 这使组织能够查看和分析跨多个云部署的性能数据,从而全面了解资源性能和成本,并简化运营。

  3. 异常检测和警报: 利用通过 Azure Monitor 插件收集的指标,结合机器学习算法来检测资源利用率的异常。 通过建立基线性能指标并自动警报偏差,组织可以降低风险并在性能问题升级之前解决它们。

  4. 历史性能分析: 通过将数据输入到数据仓库解决方案中,使用收集的 Azure 指标进行历史分析。 这使组织能够跟踪随时间变化的趋势,从而可以根据历史性能数据进行详细的报告和决策。

Clickhouse

  1. 高容量数据的实时分析: 使用该插件将来自大型系统的流式指标馈送到 ClickHouse 中。 这种设置支持超快的查询性能和近乎实时的分析,非常适合监控高流量应用程序。

  2. 时序数据仓库: 将插件与 ClickHouse 集成以创建强大的时序数据仓库。 此用例允许组织存储详细的历史指标,并执行复杂的查询以进行趋势分析和容量规划。

  3. 分布式环境中的可扩展监控: 利用该插件在 ClickHouse 中为每种指标类型动态创建表,从而更容易管理和查询来自大量分布式系统的数据,而无需事先定义模式。

  4. 针对物联网部署的优化存储: 部署该插件以将来自物联网传感器的数据摄取到 ClickHouse 中。 其高效的模式创建和原生类型映射有助于处理海量数据,从而实现实时监控和预测性维护。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它会更有价值。 使用 InfluxDB,第一时序平台,旨在与 Telegraf 一起扩展。

了解入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成