AWS Data Firehose 和 Redis 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 AWS Data Firehose 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源: DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。使用 InfluxDB,第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件监听通过 HTTP 从 AWS Data Firehose 以支持的数据格式发送的指标,提供实时数据摄取能力。

Redis 插件使用户能够将 Telegraf 收集的指标直接发送到 Redis。此集成非常适合需要强大的时序数据存储和分析的应用程序。

集成详情

AWS Data Firehose

AWS Data Firehose Telegraf 插件旨在通过 HTTP 接收来自 AWS Data Firehose 的指标。此插件监听各种格式的传入数据,并根据官方 AWS 文档中概述的请求-响应模式对其进行处理。与在固定间隔运行的标准输入插件不同,此服务插件初始化一个保持活动的监听器,等待传入的指标。这允许从 AWS Data Firehose 实时摄取数据,使其适用于需要立即进行数据处理的场景。主要功能包括指定服务地址、路径以及支持 TLS 连接以进行安全数据传输的能力。此外,该插件还支持可选的身份验证密钥和自定义标签,增强了其在各种涉及数据流和处理的用例中的灵活性。

Redis

Redis Telegraf 插件专为将指标写入 RedisTimeSeries 而设计,RedisTimeSeries 是一个专门用于时序数据的 Redis 数据库模块。此插件促进了 Telegraf 与 RedisTimeSeries 的集成,从而可以高效地存储和检索带时间戳的数据。借助 RedisTimeSeries,用户可以利用增强的功能来管理时序数据,包括聚合视图和范围查询。该插件提供了各种配置选项,以实现安全连接到您的 Redis 数据库所需的灵活性,包括对身份验证、超时、数据类型转换和 TLS 配置的支持。底层技术利用了 Redis 的效率和可扩展性,使其成为高容量指标环境的绝佳选择,在这些环境中,实时处理至关重要。

配置

AWS Data Firehose

[[inputs.firehose]]
  ## Address and port to host HTTP listener on
  service_address = ":8080"

  ## Paths to listen to.
  # paths = ["/telegraf"]

  ## maximum duration before timing out read of the request
  # read_timeout = "5s"
  ## maximum duration before timing out write of the response
  # write_timeout = "5s"

  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Add service certificate and key
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

  ## Minimal TLS version accepted by the server
  # tls_min_version = "TLS12"

  ## Optional access key to accept for authentication.
  ## AWS Data Firehose uses "x-amz-firehose-access-key" header to set the access key.
  ## If no access_key is provided (default), authentication is completely disabled and
  ## this plugin will accept all request ignoring the provided access-key in the request!
  # access_key = "foobar"

  ## Optional setting to add parameters as tags
  ## If the http header "x-amz-firehose-common-attributes" is not present on the
  ## request, no corresponding tag will be added. The header value should be a
  ## json and should follow the schema as describe in the official documentation:
  ## https://docs.aws.amazon.com/firehose/latest/dev/httpdeliveryrequestresponse.html#requestformat
  # parameter_tags = ["env"]

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  # data_format = "influx"

Redis

[[outputs.redistimeseries]]
  ## The address of the RedisTimeSeries server.
  address = "127.0.0.1:6379"

  ## Redis ACL credentials
  # username = ""
  # password = ""
  # database = 0

  ## Timeout for operations such as ping or sending metrics
  # timeout = "10s"

  ## Enable attempt to convert string fields to numeric values
  ## If "false" or in case the string value cannot be converted the string
  ## field will be dropped.
  # convert_string_fields = true

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  # insecure_skip_verify = false

输入和输出集成示例

AWS Data Firehose

  1. 实时数据分析:使用 AWS Data Firehose 插件,组织可以从各种来源(例如应用程序日志或 IoT 设备)实时流式传输数据到分析平台。这使数据团队能够分析传入的数据(在其生成时),从而根据最新的指标实现快速洞察和运营调整。

  2. 分析访问模式以进行优化:通过收集有关客户端如何通过 AWS Data Firehose 与应用程序交互的数据,企业可以获得有关用户行为的宝贵见解。这可以推动内容个性化策略或优化服务器架构,以便根据流量模式获得更好的性能。

  3. 自动化警报机制:通过此插件将 AWS Data Firehose 与警报系统集成,使团队能够根据收集的特定指标设置自动化警报。例如,如果输入数据中达到特定阈值,则警报可以触发运营团队调查潜在问题,以防止问题升级。

Redis

  1. 监控 IoT 传感器数据:利用 Redis Telegraf 插件实时收集和存储来自 IoT 传感器的数据。通过将插件连接到 RedisTimeSeries 数据库,用户可以分析温度、湿度或其他环境因素的趋势。高效查询历史传感器数据的能力将有助于预测性维护,并有助于资源管理。

  2. 金融市场数据聚合:使用此插件跟踪和存储来自各种来源的时间敏感型金融数据。通过将指标发送到 Redis,金融机构可以聚合和分析市场趋势或随时间变化的价格,从而为他们提供从可靠的时序分析中得出的可操作的见解。

  3. 应用程序性能监控 (APM):实施 Redis 插件以收集应用程序性能指标,例如响应时间和 CPU 使用率。用户可以使用 RedisTimeSeries 可视化其应用程序随时间的性能,从而使他们能够快速识别瓶颈并优化资源分配。

  4. 能源消耗跟踪:利用此插件来监控建筑物随时间的能源使用情况。通过与智能电表集成并将数据发送到 RedisTimeSeries,市政当局或企业可以分析能源消耗模式,从而帮助实施节能措施和可持续性实践。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它会更有价值。使用 InfluxDB,第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并为可靠的消息处理提供 DynamoDB 的检查点功能。

查看集成