目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它都更有价值。 借助 InfluxDB,这是排名第一的时序平台,旨在与 Telegraf 一起扩展。
查看入门方法
输入和输出集成概述
此插件侦听通过 HTTP 从 AWS Data Firehose 以受支持的数据格式发送的指标,从而提供实时数据摄取功能。
Telegraf SQL 插件允许您将 Telegraf 的指标直接存储到 MySQL 数据库中,从而更轻松地分析和可视化收集的指标。
集成详情
AWS Data Firehose
AWS Data Firehose Telegraf 插件旨在通过 HTTP 接收来自 AWS Data Firehose 的指标。 此插件侦听各种格式的传入数据,并根据官方 AWS 文档中概述的请求-响应模式对其进行处理。 与按固定间隔运行的标准输入插件不同,此服务插件初始化一个侦听器,该侦听器保持活动状态,等待传入的指标。 这允许从 AWS Data Firehose 实时摄取数据,使其适用于需要立即进行数据处理的场景。 主要功能包括指定服务地址、路径以及支持 TLS 连接以实现安全数据传输的功能。 此外,该插件还容纳可选的身份验证密钥和自定义标签,从而增强了其在涉及数据流和处理的各种用例中的灵活性。
MySQL
Telegraf 的 SQL 输出插件旨在通过基于传入指标动态创建表和列,将指标数据无缝写入 SQL 数据库。 当配置为 MySQL 时,该插件利用 go-sql-driver/mysql,这需要启用 ANSI_QUOTES SQL 模式以确保正确处理带引号的标识符。 这种动态模式创建方法确保每个指标都存储在其自己的表中,其结构源自其字段和标签,从而提供系统性能的详细、带时间戳的记录。 该插件的灵活性使其能够处理高吞吐量环境,使其成为需要强大、精细的指标日志记录和历史数据分析的场景的理想选择。
配置
AWS Data Firehose
[[inputs.firehose]]
## Address and port to host HTTP listener on
service_address = ":8080"
## Paths to listen to.
# paths = ["/telegraf"]
## maximum duration before timing out read of the request
# read_timeout = "5s"
## maximum duration before timing out write of the response
# write_timeout = "5s"
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Add service certificate and key
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Minimal TLS version accepted by the server
# tls_min_version = "TLS12"
## Optional access key to accept for authentication.
## AWS Data Firehose uses "x-amz-firehose-access-key" header to set the access key.
## If no access_key is provided (default), authentication is completely disabled and
## this plugin will accept all request ignoring the provided access-key in the request!
# access_key = "foobar"
## Optional setting to add parameters as tags
## If the http header "x-amz-firehose-common-attributes" is not present on the
## request, no corresponding tag will be added. The header value should be a
## json and should follow the schema as describe in the official documentation:
## https://docs.aws.amazon.com/firehose/latest/dev/httpdeliveryrequestresponse.html#requestformat
# parameter_tags = ["env"]
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
# data_format = "influx"
MySQL
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
driver = "mysql"
## Data source name
## The format of the data source name is different for each database driver.
## See the plugin readme for details.
data_source_name = "username:password@tcp(host:port)/dbname"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE}({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - tablename as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL
init_sql = "SET sql_mode='ANSI_QUOTES';"
## Maximum amount of time a connection may be idle. "0s" means connections are
## never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections
## are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on
## the right are the data types Telegraf will use when sending to a database.
##
## The database values used must be data types the destination database
## understands. It is up to the user to ensure that the selected data type is
## available in the database they are using. Refer to your database
## documentation for what data types are available and supported.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
# ## This setting controls the behavior of the unsigned value. By default the
# ## setting will take the integer value and append the unsigned value to it. The other
# ## option is "literal", which will use the actual value the user provides to
# ## the unsigned option. This is useful for a database like ClickHouse where
# ## the unsigned value should use a value like "uint64".
# # conversion_style = "unsigned_suffix"
输入和输出集成示例
AWS Data Firehose
-
实时数据分析:通过使用 AWS Data Firehose 插件,组织可以从各种来源(例如应用程序日志或物联网设备)实时流式传输数据,直接进入分析平台。 这使数据团队能够在生成传入数据时对其进行分析,从而可以根据新的指标快速获得见解和进行运营调整。
-
分析访问模式以进行优化:通过收集有关客户端如何通过 AWS Data Firehose 与应用程序交互的数据,企业可以获得有关用户行为的宝贵见解。 这可以推动内容个性化策略或优化服务器架构,以根据流量模式获得更好的性能。
-
自动化警报机制:通过此插件将 AWS Data Firehose 与警报系统集成,团队可以根据收集的特定指标设置自动化警报。 例如,如果在输入数据中达到特定阈值,则警报可以触发运营团队调查潜在问题,以防问题升级。
MySQL
-
实时 Web 分析存储:利用该插件捕获网站性能指标并将其存储在 MySQL 中。 此设置使团队能够监控用户交互、分析流量模式并根据实时数据洞察动态调整站点功能。
-
物联网设备监控:利用该插件从物联网传感器网络收集指标并将其记录到 MySQL 数据库中。 此用例支持对设备运行状况和性能进行持续监控,从而可以进行预测性维护并对异常情况做出立即响应。
-
金融交易日志记录:记录具有精确时间戳的高频金融交易数据。 这种方法支持强大的审计跟踪、实时欺诈检测以及全面的历史分析,以用于合规性和报告目的。
-
应用程序性能基准测试:将该插件与应用程序性能监控系统集成,以将指标记录到 MySQL 中。 这有助于随着时间的推移进行详细的基准测试和趋势分析,使组织能够识别性能瓶颈并有效地优化资源分配。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。 当您将任何数据视为时序数据时,它都更有价值。 借助 InfluxDB,这是排名第一的时序平台,旨在与 Telegraf 一起扩展。
查看入门方法