目录
输入和输出集成概述
此插件监听通过 HTTP 从 AWS Data Firehose 以支持的数据格式发送的指标,提供实时数据摄取功能。
Telegraf 的 SQL 插件有助于将指标存储在 SQL 数据库中。当配置为 Microsoft SQL Server 时,它支持特定的 DSN 格式和架构要求,从而实现与 SQL Server 的无缝集成。
集成详情
AWS Data Firehose
AWS Data Firehose Telegraf 插件旨在通过 HTTP 接收来自 AWS Data Firehose 的指标。此插件监听各种格式的传入数据,并根据官方 AWS 文档中概述的请求-响应模式对其进行处理。与在固定间隔内运行的标准输入插件不同,此服务插件初始化一个监听器,该监听器保持活动状态,等待传入的指标。这允许从 AWS Data Firehose 实时摄取数据,使其适用于需要立即进行数据处理的场景。主要功能包括指定服务地址、路径以及支持 TLS 连接以实现安全数据传输。此外,该插件还支持可选的身份验证密钥和自定义标签,从而增强了其在涉及数据流和处理的各种用例中的灵活性。
Microsoft SQL Server
Telegraf 用于 Microsoft SQL Server 的 SQL 输出插件旨在通过动态创建与传入数据结构匹配的表和列来捕获和存储指标数据。此集成利用 go-mssqldb 驱动程序,该驱动程序通过包含服务器、端口和数据库详细信息的 DSN 遵循 SQL Server 连接协议。尽管该驱动程序由于单元测试有限而被认为是实验性的,但它为动态架构生成和数据插入提供了强大的支持,从而可以详细记录系统性能的时间戳记录。尽管其状态为实验性,但这种灵活性使其成为需要可靠且精细的指标日志记录的环境的宝贵工具。
配置
AWS Data Firehose
[[inputs.firehose]]
## Address and port to host HTTP listener on
service_address = ":8080"
## Paths to listen to.
# paths = ["/telegraf"]
## maximum duration before timing out read of the request
# read_timeout = "5s"
## maximum duration before timing out write of the response
# write_timeout = "5s"
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Add service certificate and key
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Minimal TLS version accepted by the server
# tls_min_version = "TLS12"
## Optional access key to accept for authentication.
## AWS Data Firehose uses "x-amz-firehose-access-key" header to set the access key.
## If no access_key is provided (default), authentication is completely disabled and
## this plugin will accept all request ignoring the provided access-key in the request!
# access_key = "foobar"
## Optional setting to add parameters as tags
## If the http header "x-amz-firehose-common-attributes" is not present on the
## request, no corresponding tag will be added. The header value should be a
## json and should follow the schema as describe in the official documentation:
## https://docs.aws.amazon.com/firehose/latest/dev/httpdeliveryrequestresponse.html#requestformat
# parameter_tags = ["env"]
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
# data_format = "influx"
Microsoft SQL Server
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
driver = "mssql"
## Data source name
## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE} ({COLUMNS})"
## Table existence check template
## Available template variables:
## {TABLE} - table name as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL (optional)
init_sql = ""
## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## Metric type to SQL type conversion
## You can customize the mapping if needed.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
输入和输出集成示例
AWS Data Firehose
-
实时数据分析:通过使用 AWS Data Firehose 插件,组织可以从各种来源(例如应用程序日志或 IoT 设备)实时流式传输数据到分析平台。这使数据团队能够在生成传入数据时对其进行分析,从而根据最新的指标实现快速洞察和运营调整。
-
分析访问模式以进行优化:通过收集有关客户端如何通过 AWS Data Firehose 与应用程序交互的数据,企业可以获得有关用户行为的宝贵见解。这可以推动内容个性化策略或优化服务器架构,以根据流量模式获得更好的性能。
-
自动化警报机制:通过此插件将 AWS Data Firehose 与警报系统集成,团队可以根据收集的特定指标设置自动化警报。例如,如果在输入数据中达到特定阈值,警报可以触发运营团队调查潜在问题,以防止问题升级。
Microsoft SQL Server
-
企业应用程序监控:利用该插件捕获从 SQL Server 上运行的企业应用程序的详细性能指标。此设置允许 IT 团队分析系统性能、跟踪事务时间并识别复杂的多层环境中的瓶颈。
-
动态基础设施审计:部署该插件以创建 SQL Server 中基础设施变更和性能指标的动态审计日志。此用例非常适合需要实时监控和系统性能历史分析以进行合规性和优化的组织。
-
自动化性能基准测试:使用该插件持续记录和分析 SQL Server 数据库的性能指标。这实现了自动化基准测试,将历史数据与当前性能进行比较,有助于快速识别服务中的异常或降级。
-
集成 DevOps 仪表板:将该插件与 DevOps 监控工具集成,以将来自 SQL Server 的实时指标馈送到集中式仪表板。这提供了应用程序运行状况的整体视图,使团队可以将 SQL Server 性能与应用程序级别的事件相关联,从而加快故障排除和主动维护。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。