目录
输入和输出集成概述
此插件监听通过 HTTP 从 AWS Data Firehose 以支持的数据格式发送的指标,提供实时数据摄取功能。
此插件使用参数化的 SQL INSERT 语句将 Telegraf 中的指标直接写入 MariaDB,从而提供了一种将指标存储在结构化关系表中的灵活方法。
集成详情
AWS Data Firehose
AWS Data Firehose Telegraf 插件旨在通过 HTTP 接收来自 AWS Data Firehose 的指标。此插件监听各种格式的传入数据,并根据官方 AWS 文档中概述的请求-响应模式对其进行处理。与按固定间隔运行的标准输入插件不同,此服务插件初始化一个保持活动状态的监听器,等待传入的指标。这允许从 AWS Data Firehose 进行实时数据摄取,使其适用于需要立即进行数据处理的场景。主要功能包括指定服务地址、路径以及支持 TLS 连接以实现安全数据传输的能力。此外,该插件还支持可选的身份验证密钥和自定义标签,从而增强了其在涉及数据流和处理的各种用例中的灵活性。
MariaDB
Telegraf 中的 SQL 输出插件允许通过执行参数化的 SQL 语句将指标直接写入 SQL 兼容数据库(如 MariaDB)。凭借对 MySQL 驱动程序的支持,该插件与 MariaDB 无缝集成,以实现可靠的结构化指标存储。此设置非常适合喜欢基于 SQL 的分析或希望将指标与业务数据一起存储以进行统一查询的用户。MariaDB 是 MySQL 的社区开发的、企业级分支,它强调性能、安全性和开放性。该插件支持将时间序列指标插入自定义架构,从而可以使用 SQL 连接器灵活地进行分析并与 Metabase 或 Grafana 等 BI 工具集成。
配置
AWS Data Firehose
[[inputs.firehose]]
## Address and port to host HTTP listener on
service_address = ":8080"
## Paths to listen to.
# paths = ["/telegraf"]
## maximum duration before timing out read of the request
# read_timeout = "5s"
## maximum duration before timing out write of the response
# write_timeout = "5s"
## Set one or more allowed client CA certificate file names to
## enable mutually authenticated TLS connections
# tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]
## Add service certificate and key
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Minimal TLS version accepted by the server
# tls_min_version = "TLS12"
## Optional access key to accept for authentication.
## AWS Data Firehose uses "x-amz-firehose-access-key" header to set the access key.
## If no access_key is provided (default), authentication is completely disabled and
## this plugin will accept all request ignoring the provided access-key in the request!
# access_key = "foobar"
## Optional setting to add parameters as tags
## If the http header "x-amz-firehose-common-attributes" is not present on the
## request, no corresponding tag will be added. The header value should be a
## json and should follow the schema as describe in the official documentation:
## https://docs.aws.amazon.com/firehose/latest/dev/httpdeliveryrequestresponse.html#requestformat
# parameter_tags = ["env"]
## Data format to consume.
## Each data format has its own unique set of configuration options, read
## more about them here:
## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
# data_format = "influx"
MariaDB
[[outputs.sql]]
## Database driver
## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
## sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
driver = "mysql"
## Data source name
## The format of the data source name is different for each database driver.
## See the plugin readme for details.
data_source_name = "username:password@tcp(host:port)/dbname"
## Timestamp column name
timestamp_column = "timestamp"
## Table creation template
## Available template variables:
## {TABLE} - table name as a quoted identifier
## {TABLELITERAL} - table name as a quoted string literal
## {COLUMNS} - column definitions (list of quoted identifiers and types)
table_template = "CREATE TABLE {TABLE}({COLUMNS})"
## SQL INSERT statement with placeholders. Telegraf will substitute values at runtime.
## table_template = "INSERT INTO metrics (timestamp, name, value, tags) VALUES (?, ?, ?, ?)"
## Table existence check template
## Available template variables:
## {TABLE} - tablename as a quoted identifier
table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"
## Initialization SQL
init_sql = "SET sql_mode='ANSI_QUOTES';"
## Maximum amount of time a connection may be idle. "0s" means connections are
## never closed due to idle time.
connection_max_idle_time = "0s"
## Maximum amount of time a connection may be reused. "0s" means connections
## are never closed due to age.
connection_max_lifetime = "0s"
## Maximum number of connections in the idle connection pool. 0 means unlimited.
connection_max_idle = 2
## Maximum number of open connections to the database. 0 means unlimited.
connection_max_open = 0
## NOTE: Due to the way TOML is parsed, tables must be at the END of the
## plugin definition, otherwise additional config options are read as part of the
## table
## Metric type to SQL type conversion
## The values on the left are the data types Telegraf has and the values on
## the right are the data types Telegraf will use when sending to a database.
##
## The database values used must be data types the destination database
## understands. It is up to the user to ensure that the selected data type is
## available in the database they are using. Refer to your database
## documentation for what data types are available and supported.
#[outputs.sql.convert]
# integer = "INT"
# real = "DOUBLE"
# text = "TEXT"
# timestamp = "TIMESTAMP"
# defaultvalue = "TEXT"
# unsigned = "UNSIGNED"
# bool = "BOOL"
# ## This setting controls the behavior of the unsigned value. By default the
# ## setting will take the integer value and append the unsigned value to it. The other
# ## option is "literal", which will use the actual value the user provides to
# ## the unsigned option. This is useful for a database like ClickHouse where
# ## the unsigned value should use a value like "uint64".
# # conversion_style = "unsigned_suffix"
输入和输出集成示例
AWS Data Firehose
-
实时数据分析:通过使用 AWS Data Firehose 插件,组织可以实时地从各种来源(如应用程序日志或物联网设备)将数据直接流式传输到分析平台。这使数据团队能够在生成传入数据时对其进行分析,从而根据最新的指标实现快速洞察和运营调整。
-
分析访问模式以进行优化:通过收集有关客户端如何通过 AWS Data Firehose 与应用程序交互的数据,企业可以深入了解用户行为。这可以推动内容个性化策略或根据流量模式优化服务器架构以获得更好的性能。
-
自动化警报机制:通过此插件将 AWS Data Firehose 与警报系统集成,使团队能够根据收集的特定指标设置自动化警报。例如,如果在输入数据中达到特定阈值,则警报可以触发运营团队调查潜在问题,以防问题升级。
MariaDB
-
商业智能集成:将应用程序性能指标直接存储到 MariaDB 中,并将其连接到 Metabase 或 Apache Superset 等 BI 工具。此设置允许将运营数据与业务 KPI 混合,以实现统一的仪表板,从而提高跨部门的可见性。
-
使用历史指标进行合规性报告:使用此插件将指标记录到 MariaDB 中,以用于审计和合规性用例。关系模型支持使用带时间戳的条目精确查询过去的绩效指标,从而支持监管文档。
-
基于 SQL 逻辑的自定义警报:将指标插入 MariaDB,并使用自定义 SQL 查询来定义警报阈值或条件。与 cron 作业或计划脚本结合使用,这可以实现传统指标平台无法实现的高级警报工作流程。
-
物联网传感器指标存储:通过 Telegraf 收集来自物联网设备的传感器数据,并使用规范化架构将其存储在 MariaDB 中。这种方法经济高效,并且与现有的基于 SQL 的系统集成良好,可用于实时或历史分析。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。