AWS Data Firehose 和 Loki 集成

强大性能,轻松集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是大规模实时查询的推荐配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 AWS Data Firehose 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。使用 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件侦听通过 HTTP 从 AWS Data Firehose 以支持的数据格式发送的指标,提供实时数据摄取功能。

Loki 插件允许用户将日志发送到 Loki 进行聚合和查询,从而利用 Loki 高效的存储能力。

集成详情

AWS Data Firehose

AWS Data Firehose Telegraf 插件旨在通过 HTTP 接收来自 AWS Data Firehose 的指标。此插件侦听各种格式的传入数据,并根据官方 AWS 文档中概述的请求-响应架构对其进行处理。与在固定间隔内运行的标准输入插件不同,此服务插件初始化一个保持活动状态的侦听器,等待传入的指标。这允许从 AWS Data Firehose 实时摄取数据,使其适用于需要立即进行数据处理的场景。主要功能包括指定服务地址、路径以及支持 TLS 连接以实现安全数据传输的能力。此外,该插件还支持可选的身份验证密钥和自定义标签,增强了其在涉及数据流和处理的各种用例中的灵活性。

Loki

此 Loki 插件与 Grafana Loki 集成,Grafana Loki 是一个强大的日志聚合系统。通过以与 Loki 兼容的格式发送日志,此插件可以高效地存储和查询日志。每个日志条目都以键值格式结构化,其中键表示字段名称,值表示相应的日志信息。按时间戳对日志进行排序可确保通过 Loki 查询时,日志流保持时间顺序。此插件对密钥的支持使得更轻松地安全管理身份验证参数,而 HTTP 标头、gzip 编码和 TLS 配置的选项增强了日志传输的适应性和安全性,适用于各种部署需求。

配置

AWS Data Firehose

[[inputs.firehose]]
  ## Address and port to host HTTP listener on
  service_address = ":8080"

  ## Paths to listen to.
  # paths = ["/telegraf"]

  ## maximum duration before timing out read of the request
  # read_timeout = "5s"
  ## maximum duration before timing out write of the response
  # write_timeout = "5s"

  ## Set one or more allowed client CA certificate file names to
  ## enable mutually authenticated TLS connections
  # tls_allowed_cacerts = ["/etc/telegraf/clientca.pem"]

  ## Add service certificate and key
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

  ## Minimal TLS version accepted by the server
  # tls_min_version = "TLS12"

  ## Optional access key to accept for authentication.
  ## AWS Data Firehose uses "x-amz-firehose-access-key" header to set the access key.
  ## If no access_key is provided (default), authentication is completely disabled and
  ## this plugin will accept all request ignoring the provided access-key in the request!
  # access_key = "foobar"

  ## Optional setting to add parameters as tags
  ## If the http header "x-amz-firehose-common-attributes" is not present on the
  ## request, no corresponding tag will be added. The header value should be a
  ## json and should follow the schema as describe in the official documentation:
  ## https://docs.aws.amazon.com/firehose/latest/dev/httpdeliveryrequestresponse.html#requestformat
  # parameter_tags = ["env"]

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  # data_format = "influx"

Loki

[[outputs.loki]]
  ## The domain of Loki
  domain = "https://loki.domain.tld"

  ## Endpoint to write api
  # endpoint = "/loki/api/v1/push"

  ## Connection timeout, defaults to "5s" if not set.
  # timeout = "5s"

  ## Basic auth credential
  # username = "loki"
  # password = "pass"

  ## Additional HTTP headers
  # http_headers = {"X-Scope-OrgID" = "1"}

  ## If the request must be gzip encoded
  # gzip_request = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"

  ## Sanitize Tag Names
  ## If true, all tag names will have invalid characters replaced with
  ## underscores that do not match the regex: ^[a-zA-Z_:][a-zA-Z0-9_:]*.
  # sanitize_label_names = false

  ## Metric Name Label
  ## Label to use for the metric name to when sending metrics. If set to an
  ## empty string, this will not add the label. This is NOT suggested as there
  ## is no way to differentiate between multiple metrics.
  # metric_name_label = "__name"

输入和输出集成示例

AWS Data Firehose

  1. 实时数据分析:通过使用 AWS Data Firehose 插件,组织可以从各种来源(例如应用程序日志或物联网设备)实时将数据流式传输到分析平台。这使数据团队能够分析传入的数据,从而根据最新的指标快速获得见解和进行运营调整。

  2. 分析访问模式以进行优化:通过收集有关客户端如何通过 AWS Data Firehose 与应用程序交互的数据,企业可以深入了解用户行为。这可以推动内容个性化策略,或根据流量模式优化服务器架构以获得更好的性能。

  3. 自动化警报机制:通过此插件将 AWS Data Firehose 与警报系统集成,团队可以根据收集的特定指标设置自动化警报。例如,如果输入数据中达到特定阈值,则警报可以触发运营团队调查潜在问题,以防止问题升级。

Loki

  1. 微服务的集中日志记录:使用 Loki 插件收集来自 Kubernetes 集群中运行的多个微服务的日志。通过将日志定向到集中的 Loki 实例,开发人员可以在一个位置监控、搜索和分析来自所有服务的日志,从而更轻松地进行故障排除和性能监控。此设置简化了运营,并支持对分布式应用程序中出现的问题做出快速响应。

  2. 实时日志异常检测:将 Loki 与监控工具结合使用,以实时分析日志输出,查找可能指示系统错误或安全威胁的异常模式。在日志流上实施异常检测使团队能够主动识别和响应事件,从而提高系统可靠性并增强安全态势。

  3. 通过 Gzip 压缩增强日志处理:配置 Loki 插件以利用 gzip 压缩进行日志传输。这种方法可以减少带宽使用并提高传输速度,这在网络带宽可能受到限制的环境中尤其有利。它对于高容量日志记录应用程序尤其有用,在这些应用程序中,每个字节都很重要,性能至关重要。

  4. 通过自定义标头实现多租户支持:利用添加自定义 HTTP 标头的能力来隔离多租户应用程序环境中不同租户的日志。通过使用 Loki 插件为每个租户发送不同的标头,运营商可以确保正确的日志管理并符合数据隔离要求,使其成为 SaaS 应用程序的通用解决方案。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。使用 InfluxDB,排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成