目录
输入和输出集成概述
Amazon ECS 输入插件使 Telegraf 能够从 AWS ECS 容器收集指标,从而提供有关容器性能和资源利用率的详细见解。
此输出插件提供了一种可靠高效的机制,用于将 Telegraf 收集的指标直接路由到 TimescaleDB。 通过利用 PostgreSQL 强大的生态系统以及 TimescaleDB 的时序优化,它支持高性能数据摄取和高级查询功能。
集成详情
Amazon ECS
Telegraf 的 Amazon ECS 插件旨在从 AWS Fargate 或 EC2 实例上运行的 ECS(Elastic Container Service)任务收集指标。 通过利用 ECS 元数据和统计 API 端点(v2 和 v3),它可以获取有关任务中容器性能和运行状况的实时信息。 此插件与被检查的工作负载在同一任务中运行,从而确保无缝访问元数据和统计信息。 值得注意的是,它结合了 ECS 特有的功能,这些功能使其与 Docker 输入插件区分开来,例如处理独特的 ECS 元数据格式和统计信息。 用户可以包含或排除特定容器,并调整要监视的容器状态,以及定义 ECS 标签的标签选项。 这种灵活性允许定制的监控体验,以符合 ECS 环境的特定需求,从而增强对容器化应用程序的可观察性和控制。
TimescaleDB
TimescaleDB 是一个开源时序数据库,作为 PostgreSQL 的扩展构建,旨在高效处理大规模、面向时间的数据。 TimescaleDB 于 2017 年推出,是为了响应对强大、可扩展的解决方案日益增长的需求而出现的,该解决方案可以管理海量数据,并具有高插入率和复杂查询。 通过利用 PostgreSQL 熟悉的 SQL 界面,并通过专门的时序功能对其进行增强,TimescaleDB 迅速在希望将时序功能集成到现有关系数据库中的开发人员中流行起来。 它的混合方法使用户可以从 PostgreSQL 的灵活性、可靠性和生态系统中受益,同时为时序数据提供优化的性能。
该数据库在需要快速摄取数据点以及对历史时期进行复杂分析查询的环境中尤其有效。 TimescaleDB 具有许多创新功能,如超表,它可以将数据透明地分区为可管理的块,以及内置的连续聚合。 这些功能可以显着提高查询速度和资源效率。
配置
Amazon ECS
[[inputs.ecs]]
# endpoint_url = ""
# container_name_include = []
# container_name_exclude = []
# container_status_include = []
# container_status_exclude = []
ecs_label_include = [ "com.amazonaws.ecs.*" ]
ecs_label_exclude = []
# timeout = "5s"
[[inputs.ecs]]
endpoint_url = "http://169.254.170.2"
# container_name_include = []
# container_name_exclude = []
# container_status_include = []
# container_status_exclude = []
ecs_label_include = [ "com.amazonaws.ecs.*" ]
ecs_label_exclude = []
# timeout = "5s"
TimescaleDB
# Publishes metrics to a TimescaleDB database
[[outputs.postgresql]]
## Specify connection address via the standard libpq connection string:
## host=... user=... password=... sslmode=... dbname=...
## Or a URL:
## postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
##
## All connection parameters are optional. Environment vars are also supported.
## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
## All supported vars can be found here:
## https://postgresql.ac.cn/docs/current/libpq-envars.html
##
## Non-standard parameters:
## pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
## pool_min_conns (default: 0) - Minimum size of connection pool.
## pool_max_conn_lifetime (default: 0s) - Maximum connection age before closing.
## pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
## pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
# connection = ""
## Postgres schema to use.
# schema = "public"
## Store tags as foreign keys in the metrics table. Default is false.
# tags_as_foreign_keys = false
## Suffix to append to table name (measurement name) for the foreign tag table.
# tag_table_suffix = "_tag"
## Deny inserting metrics if the foreign tag can't be inserted.
# foreign_tag_constraint = false
## Store all tags as a JSONB object in a single 'tags' column.
# tags_as_jsonb = false
## Store all fields as a JSONB object in a single 'fields' column.
# fields_as_jsonb = false
## Name of the timestamp column
## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
# timestamp_column_name = "time"
## Type of the timestamp column
## Currently, "timestamp without time zone" and "timestamp with time zone"
## are supported
# timestamp_column_type = "timestamp without time zone"
## Templated statements to execute when creating a new table.
# create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }})''',
# ]
## Templated statements to execute when adding columns to a table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped. Points containing fields for which there is no
## column will have the field omitted.
# add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## Templated statements to execute when creating a new tag table.
# tag_table_create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
# ]
## Templated statements to execute when adding columns to a tag table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped.
# tag_table_add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## The postgres data type to use for storing unsigned 64-bit integer values
## (Postgres does not have a native unsigned 64-bit integer type).
## The value can be one of:
## numeric - Uses the PostgreSQL "numeric" data type.
## uint8 - Requires pguint extension (https://github.com/petere/pguint)
# uint64_type = "numeric"
## When using pool_max_conns > 1, and a temporary error occurs, the query is
## retried with an incremental backoff. This controls the maximum duration.
# retry_max_backoff = "15s"
## Approximate number of tag IDs to store in in-memory cache (when using
## tags_as_foreign_keys). This is an optimization to skip inserting known
## tag IDs. Each entry consumes approximately 34 bytes of memory.
# tag_cache_size = 100000
## Cut column names at the given length to not exceed PostgreSQL's
## 'identifier length' limit (default: no limit)
## (see https://postgresql.ac.cn/docs/current/limits.html)
## Be careful to not create duplicate column names!
# column_name_length_limit = 0
## Enable & set the log level for the Postgres driver.
# log_level = "warn" # trace, debug, info, warn, error, none
输入和输出集成示例
Amazon ECS
-
动态容器监控:使用 Amazon ECS 插件在自动扩展 ECS 架构中动态监控容器运行状况。 随着新容器的启动或关闭,插件将自动调整其收集的指标,确保有效捕获每个容器的性能数据,而无需手动配置。
-
自定义资源分配警报:实施 ECS 插件以建立每个容器的资源使用阈值。 通过与通知系统集成,团队可以在容器的 CPU 或内存使用量超过预定义限制时收到警报,从而实现主动资源管理并保持应用程序性能。
-
成本优化仪表板:利用从 ECS 插件收集的指标来创建仪表板,该仪表板可视化与每个容器关联的资源使用量和成本。 这种洞察力使组织能够识别未充分利用的资源,优化与其容器基础设施相关的成本,从而提高云运营的财务效率。
-
高级容器安全监控:结合安全工具使用此插件来监控 ECS 容器指标中的异常情况。 通过持续分析使用模式,可以检测到任何突然的峰值或不规则行为,从而提示自动安全响应并维护系统完整性。
TimescaleDB
-
实时物联网数据摄取:使用该插件实时收集和存储来自数千个物联网设备的传感器数据。 这种设置有助于立即分析,帮助组织监控运营效率并快速响应不断变化的条件。
-
云应用程序性能监控:利用该插件将分布式云应用程序的详细性能指标馈送到 TimescaleDB。 这种集成支持实时仪表板和警报,使团队能够快速识别和缓解性能瓶颈。
-
历史数据分析和报告:实施一个系统,将长期指标存储在 TimescaleDB 中,以进行全面的历史分析。 这种方法使企业能够执行趋势分析、生成详细报告,并根据存档的时序数据做出数据驱动的决策。
-
自适应警报和异常检测:将插件与自动异常检测工作流集成。 通过将指标持续流式传输到 TimescaleDB,机器学习模型可以分析数据模式,并在发生异常时触发警报,从而提高系统可靠性和主动维护。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。