Amazon ECS 和 Snowflake 集成

强大的性能和简单的集成,由 Telegraf 提供支持,Telegraf 是 InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Amazon ECS 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Amazon ECS 输入插件使 Telegraf 能够从 AWS ECS 容器收集指标,从而提供对容器性能和资源利用率的详细见解。

Telegraf 的 SQL 插件允许在 SQL 数据库中无缝存储指标。当配置为 Snowflake 时,它采用专门的 DSN 格式和动态表创建,以将指标映射到适当的模式。

集成详情

Amazon ECS

Telegraf 的 Amazon ECS 插件旨在从 AWS Fargate 或 EC2 实例上运行的 ECS(弹性容器服务)任务收集指标。通过利用 ECS 元数据和统计 API 端点(v2 和 v3),它可以获取任务中容器性能和运行状况的实时信息。此插件与被检查的工作负载在同一任务中运行,确保无缝访问元数据和统计信息。值得注意的是,它结合了 ECS 特定的功能,这些功能使其与 Docker 输入插件区分开来,例如处理独特的 ECS 元数据格式和统计信息。用户可以包含或排除特定容器,并调整要监视的容器状态,以及定义 ECS 标签的标签选项。这种灵活性允许定制监控体验,以满足 ECS 环境的特定需求,从而增强对容器化应用程序的可观察性和控制。

Snowflake

Telegraf 的 SQL 插件被设计为通过根据传入数据创建表和列,将指标动态写入 SQL 数据库。当配置为 Snowflake 时,它采用 gosnowflake 驱动程序,该驱动程序使用 DSN,DSN 以紧凑的格式封装凭据、帐户详细信息和数据库配置。此设置允许自动生成表,其中每个指标都以精确的时间戳记录,从而确保详细的历史跟踪。虽然此集成被认为是实验性的,但它利用了 Snowflake 强大的数据仓库功能,使其适用于可扩展的、基于云的分析和报告解决方案。

配置

Amazon ECS

[[inputs.ecs]]
  # endpoint_url = ""
  # container_name_include = []
  # container_name_exclude = []
  # container_status_include = []
  # container_status_exclude = []
  ecs_label_include = [ "com.amazonaws.ecs.*" ]
  ecs_label_exclude = []
  # timeout = "5s"

[[inputs.ecs]]
  endpoint_url = "http://169.254.170.2"
  # container_name_include = []
  # container_name_exclude = []
  # container_status_include = []
  # container_status_exclude = []
  ecs_label_include = [ "com.amazonaws.ecs.*" ]
  ecs_label_exclude = []
  # timeout = "5s"

Snowflake

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "snowflake"

  ## Data source name
  ## For Snowflake, the DSN format typically includes the username, password, account identifier, and optional warehouse, database, and schema.
  ## Example DSN: "username:password@account/warehouse/db/schema"
  data_source_name = "username:password@account/warehouse/db/schema"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## Defaults to ANSI/ISO SQL types unless overridden. Adjust if needed for Snowflake compatibility.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

Amazon ECS

  1. 动态容器监控:使用 Amazon ECS 插件在自动扩展的 ECS 架构中动态监控容器运行状况。当新的容器启动或停止时,插件将自动调整其收集的指标,确保有效地捕获每个容器的性能数据,而无需手动配置。

  2. 自定义资源分配警报:实施 ECS 插件以建立每个容器资源使用率的阈值。通过与通知系统集成,团队可以在容器的 CPU 或内存使用率超过预定义限制时收到警报,从而实现主动资源管理并保持应用程序性能。

  3. 成本优化仪表板:利用从 ECS 插件收集的指标来创建仪表板,该仪表板可视化与每个容器关联的资源使用率和成本。这种洞察力使组织能够识别未充分利用的资源,优化与其容器基础设施相关的成本,从而提高云运营的财务效率。

  4. 高级容器安全监控:结合安全工具使用此插件来监控 ECS 容器指标以查找异常。通过持续分析使用模式,可以检测到任何突然的峰值或不规则行为,从而提示自动安全响应并维护系统完整性。

Snowflake

  1. 基于云的数据湖集成:利用此插件将来自各种来源的实时指标流式传输到 Snowflake,从而创建集中式数据湖。此集成支持云数据上的复杂分析和机器学习工作流程。

  2. 动态商业智能仪表板:利用此插件从传入的指标自动生成表,并将它们馈送到 BI 工具中。这使企业能够创建动态仪表板,可视化性能趋势和运营见解,而无需手动模式管理。

  3. 可扩展的物联网分析:部署此插件以捕获来自物联网设备的高频数据到 Snowflake 中。此用例有助于传感器数据的聚合和分析,从而实现大规模的预测性维护和实时监控。

  4. 用于合规性的历史趋势分析:使用此插件在 Snowflake 中记录和存档详细的指标数据,然后可以查询这些数据以进行长期趋势分析和合规性报告。此设置确保组织可以维护强大的审计跟踪,并在需要时执行取证分析。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。使用 InfluxDB,排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供与 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成