Amazon ECS 和 Azure Data Explorer 集成

通过 Telegraf(InfluxData 构建的开源数据连接器)实现的强大性能和简易集成。

info

对于大规模实时查询,这不是推荐的配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Amazon ECS 和 InfluxDB

50亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。InfluxDB 是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

输入和输出集成概述

Amazon ECS 输入插件使 Telegraf 能够从 AWS ECS 容器收集指标,从而提供有关容器性能和资源利用率的详细见解。

Azure Data Explorer 插件允许将指标收集与 Azure Data Explorer 集成,使用户能够高效地分析和查询其遥测数据。借助此插件,用户可以配置摄取设置以满足其需求,并利用 Azure 强大的分析功能。

集成详情

Amazon ECS

Telegraf 的 Amazon ECS 插件旨在从 AWS Fargate 或 EC2 实例上运行的 ECS(弹性容器服务)任务收集指标。通过利用 ECS 元数据和统计 API 端点(v2 和 v3),它可以获取有关任务中容器性能和运行状况的实时信息。此插件与被检查的工作负载在同一任务中运行,确保无缝访问元数据和统计信息。值得注意的是,它包含特定于 ECS 的功能,这些功能使其与 Docker 输入插件区分开来,例如处理独特的 ECS 元数据格式和统计信息。用户可以包含或排除特定容器,并调整要监视的容器状态,以及定义 ECS 标签的标签选项。这种灵活性允许定制监控体验,以适应 ECS 环境的特定需求,从而增强对容器化应用程序的可观察性和控制。

Azure Data Explorer

Azure Data Explorer 插件允许用户将从各种 Telegraf 输入插件收集的指标、日志和时间序列数据写入 Azure Data Explorer、Azure Synapse 和 Fabric 中的实时分析。此集成充当桥梁,使应用程序和服务能够高效地监控其性能指标或日志。Azure Data Explorer 针对大量不同数据类型的分析进行了优化,使其成为云环境中实时分析和监控解决方案的绝佳选择。该插件使用户能够根据其需求配置指标摄取,动态定义表架构,并设置各种摄取方法,同时保留数据库操作所需的角色和权限的灵活性。这支持现代应用程序(使用云服务)的可扩展且安全的监控设置。

配置

Amazon ECS

[[inputs.ecs]]
  # endpoint_url = ""
  # container_name_include = []
  # container_name_exclude = []
  # container_status_include = []
  # container_status_exclude = []
  ecs_label_include = [ "com.amazonaws.ecs.*" ]
  ecs_label_exclude = []
  # timeout = "5s"

[[inputs.ecs]]
  endpoint_url = "http://169.254.170.2"
  # container_name_include = []
  # container_name_exclude = []
  # container_status_include = []
  # container_status_exclude = []
  ecs_label_include = [ "com.amazonaws.ecs.*" ]
  ecs_label_exclude = []
  # timeout = "5s"

Azure Data Explorer

[[outputs.azure_data_explorer]]
  ## The URI property of the Azure Data Explorer resource on Azure
  ## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
  endpoint_url = ""

  ## The Azure Data Explorer database that the metrics will be ingested into.
  ## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
  ## ex: "exampledatabase"
  database = ""

  ## Timeout for Azure Data Explorer operations
  # timeout = "20s"

  ## Type of metrics grouping used when pushing to Azure Data Explorer.
  ## Default is "TablePerMetric" for one table per different metric.
  ## For more information, please check the plugin README.
  # metrics_grouping_type = "TablePerMetric"

  ## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
  # table_name = ""

  ## Creates tables and relevant mapping if set to true(default).
  ## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
  # create_tables = true

  ##  Ingestion method to use.
  ##  Available options are
  ##    - managed  --  streaming ingestion with fallback to batched ingestion or the "queued" method below
  ##    - queued   --  queue up metrics data and process sequentially
  # ingestion_type = "queued"

输入和输出集成示例

Amazon ECS

  1. 动态容器监控:使用 Amazon ECS 插件在自动扩展的 ECS 架构中动态监控容器运行状况。当新容器启动或停止时,插件将自动调整其收集的指标,确保有效捕获每个容器的性能数据,而无需手动配置。

  2. 自定义资源分配警报:实施 ECS 插件以建立每个容器资源使用率的阈值。通过与通知系统集成,团队可以在容器的 CPU 或内存使用率超过预定义限制时收到警报,从而实现主动资源管理并保持应用程序性能。

  3. 成本优化仪表板:利用从 ECS 插件收集的指标创建一个仪表板,该仪表板可视化与每个容器关联的资源使用率和成本。这种洞察力使组织能够识别未充分利用的资源,优化与其容器基础设施相关的成本,从而提高云运营的财务效率。

  4. 高级容器安全监控:结合安全工具使用此插件来监控 ECS 容器指标以查找异常。通过持续分析使用模式,可以检测到任何突然的峰值或不规则行为,从而提示自动安全响应并维护系统完整性。

Azure Data Explorer

  1. 实时监控仪表板:通过使用此插件将来自各种服务的指标集成到 Azure Data Explorer 中,组织可以构建反映实时性能指标的综合仪表板。这使团队能够主动响应性能问题并立即优化系统运行状况。

  2. 集中式日志管理:利用 Azure Data Explorer 来整合来自多个应用程序和服务的日志。通过使用该插件,组织可以简化其日志分析流程,从而更轻松地搜索、过滤和从随时间累积的历史数据中获取见解。

  3. 数据驱动的警报系统:通过基于通过此插件发送的指标配置警报来增强监控功能。组织可以设置阈值并自动化事件响应,从而显着减少停机时间并提高关键操作的可靠性。

  4. 机器学习模型训练:通过利用发送到 Azure Data Explorer 的数据,组织可以执行大规模分析并准备数据以馈送到机器学习模型中。此插件能够构建数据结构,随后可用于预测分析,从而提高决策能力。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大性能,无限扩展

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。InfluxDB 是排名第一的时序平台,旨在通过 Telegraf 进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成