目录
输入和输出集成概述
Zookeeper Telegraf 插件从 Zookeeper 服务器收集和报告指标,从而促进监控和性能分析。 它利用 ‘mntr’ 命令输出收集对于维护 Zookeeper 运行状况至关重要的基本统计信息。
此输出插件通过 HTTP 事件收集器促进将 Telegraf 收集的指标直接流式传输到 Splunk,从而轻松与 Splunk 强大的分析平台集成。
集成详情
Apache Zookeeper
Telegraf 的 Zookeeper 插件旨在通过执行 ‘mntr’ 命令从 Zookeeper 服务器收集重要统计信息。 此插件充当监控工具,捕获与 Zookeeper 性能相关的重要指标,包括连接详细信息、延迟和各种操作统计信息,从而有助于评估 Zookeeper 部署的运行状况和效率。 与启用 Prometheus 指标提供程序时推荐使用的 Prometheus 输入插件相比,Zookeeper 插件访问 ‘mntr’ 命令的原始输出,使其适合不采用 Prometheus 进行指标报告的配置。 这种独特的方法允许管理员直接从 Zookeeper 收集 Java Properties 格式的指标,确保全面了解 Zookeeper 的运行状态,并能够及时响应性能异常。 它在 Zookeeper 作为集中式服务运行的环境中尤其出色,用于维护分布式系统的配置信息和名称,从而提供对故障排除和容量规划至关重要的不可估量的见解。
Splunk
使用 Telegraf 可以轻松地从许多不同的来源收集和聚合指标,并将它们发送到 Splunk。 此配置利用 HTTP 输出插件与专门的 Splunk 指标序列化器相结合,确保高效地将数据摄取到 Splunk 的指标索引中。 HEC 是 Splunk 提供的一种高级机制,旨在通过 HTTP 或 HTTPS 可靠地大规模收集数据,为安全性、监视和分析工作负载提供关键功能。 Telegraf 与 Splunk HEC 的集成通过利用标准 HTTP 协议、内置身份验证和结构化数据序列化来简化操作,优化指标摄取并实现即时可操作的见解。
配置
Apache Zookeeper
[[inputs.zookeeper]]
## An array of address to gather stats about. Specify an ip or hostname
## with port. ie localhost:2181, 10.0.0.1:2181, etc.
## If no servers are specified, then localhost is used as the host.
## If no port is specified, 2181 is used
servers = [":2181"]
## Timeout for metric collections from all servers. Minimum timeout is "1s".
# timeout = "5s"
## Float Parsing - the initial implementation forced any value unable to be
## parsed as an int to be a string. Setting this to "float" will attempt to
## parse float values as floats and not strings. This would break existing
## metrics and may cause issues if a value switches between a float and int.
# parse_floats = "string"
## Optional TLS Config
# enable_tls = false
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## If false, skip chain & host verification
# insecure_skip_verify = true
Splunk
[[outputs.http]]
## Splunk HTTP Event Collector endpoint
url = "https://splunk.example.com:8088/services/collector"
## HTTP method to use
method = "POST"
## Splunk authentication token
headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}
## Serializer for formatting metrics specifically for Splunk
data_format = "splunkmetric"
## Optional parameters
# timeout = "5s"
# insecure_skip_verify = false
# tls_ca = "/path/to/ca.pem"
# tls_cert = "/path/to/cert.pem"
# tls_key = "/path/to/key.pem"
输入和输出集成示例
Apache Zookeeper
-
集群健康状况监控:集成 Zookeeper 插件以监控依赖 Zookeeper 进行配置管理和服务发现的分布式应用程序的健康状况和性能。 通过跟踪会话计数、延迟和数据大小等指标,DevOps 团队可以在潜在问题升级之前识别它们,从而确保跨应用程序的高可用性和可靠性。
-
性能基准测试:在不同的工作负载场景中利用该插件来基准测试 Zookeeper 性能。 这不仅有助于了解 Zookeeper 在负载下的行为,还有助于调整配置以优化吞吐量并减少高峰操作期间的延迟。
-
异常警报:将此插件与警报工具结合使用,以创建一个主动监控系统,如果特定的 Zookeeper 指标超过阈值限制(例如打开的文件描述符计数或高延迟值),则该系统会通知工程师。 这使团队能够及时响应可能影响服务可靠性的问题。
-
历史数据分析:将 Zookeeper 插件收集的指标存储在时序数据库中,以分析历史性能趋势。 这使团队能够评估随时间推移变化的影响,评估扩展操作的有效性,并规划未来的容量需求。
Splunk
-
实时安全分析:利用此插件将来自各种应用程序的安全相关指标实时流式传输到 Splunk 中。 组织可以通过关联跨系统的数据流来立即检测威胁,从而显着缩短检测和响应时间。
-
多云基础设施监控:集成 Telegraf 以将来自多云环境的指标直接整合到 Splunk 中,从而实现全面的可见性和运营智能。 这种统一的监控使团队能够快速检测性能问题并简化云资源管理。
-
动态容量规划:部署该插件以将来自容器编排平台(如 Kubernetes)的资源指标持续推送到 Splunk 中。 通过利用 Splunk 的分析功能,团队可以自动化预测性扩展和资源分配,避免资源瓶颈并最大限度地降低成本。
-
自动化事件响应工作流程:将此插件与 Splunk 的警报系统结合使用,以创建自动化事件响应工作流程。 Telegraf 收集的指标会触发实时警报和自动化修复脚本,从而确保快速解决问题并保持高系统可用性。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。