Apache Zookeeper 和 MySQL 集成

强大的性能和简单的集成,由 Telegraf 驱动,InfluxData 构建的开源数据连接器。

info

这不是大规模实时查询的推荐配置。为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Apache Zookeeper 和 InfluxDB

5B+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

1B+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将其视为时序数据时,任何数据都更有价值。借助 InfluxDB,第一的时序平台,与 Telegraf 一起构建以实现扩展。

查看入门方法

输入和输出集成概述

Zookeeper Telegraf 插件收集并报告来自 Zookeeper 服务器的指标,从而促进监控和性能分析。它利用 ‘mntr’ 命令输出收集对于维护 Zookeeper 运行状况至关重要的基本统计信息。

Telegraf SQL 插件允许您将来自 Telegraf 的指标直接存储到 MySQL 数据库中,从而更容易分析和可视化收集的指标。

集成详情

Apache Zookeeper

Telegraf 的 Zookeeper 插件旨在通过执行 ‘mntr’ 命令从 Zookeeper 服务器收集重要统计信息。此插件充当监控工具,捕获与 Zookeeper 性能相关的重要指标,包括连接详细信息、延迟和各种运行统计信息,从而有助于评估 Zookeeper 部署的运行状况和效率。与建议在启用 Prometheus 指标提供程序时使用的 Prometheus 输入插件相比,Zookeeper 插件访问来自 ‘mntr’ 命令的原始输出,使其适用于不采用 Prometheus 进行指标报告的配置。这种独特的方法允许管理员直接从 Zookeeper 收集 Java Properties 格式的指标,确保全面了解 Zookeeper 的运行状态,并能够及时响应性能异常。它在 Zookeeper 作为集中式服务运行的环境中尤其出色,用于维护分布式系统的配置信息和名称,从而提供对于故障排除和容量规划至关重要的不可估量的见解。

MySQL

Telegraf 的 SQL 输出插件旨在通过基于传入指标动态创建表和列,将指标数据无缝写入 SQL 数据库。当配置为 MySQL 时,该插件利用 go-sql-driver/mysql,这需要启用 ANSI_QUOTES SQL 模式以确保正确处理带引号的标识符。这种动态模式创建方法确保每个指标都存储在其自己的表中,其结构源自其字段和标签,从而提供系统性能的详细、带时间戳的记录。该插件的灵活性使其能够处理高吞吐量环境,使其成为需要强大、精细的指标日志记录和历史数据分析的场景的理想选择。

配置

Apache Zookeeper

[[inputs.zookeeper]]
  ## An array of address to gather stats about. Specify an ip or hostname
  ## with port. ie localhost:2181, 10.0.0.1:2181, etc.

  ## If no servers are specified, then localhost is used as the host.
  ## If no port is specified, 2181 is used
  servers = [":2181"]

  ## Timeout for metric collections from all servers. Minimum timeout is "1s".
  # timeout = "5s"

  ## Float Parsing - the initial implementation forced any value unable to be
  ## parsed as an int to be a string. Setting this to "float" will attempt to
  ## parse float values as floats and not strings. This would break existing
  ## metrics and may cause issues if a value switches between a float and int.
  # parse_floats = "string"

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## If false, skip chain & host verification
  # insecure_skip_verify = true

MySQL

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ##  sqlite (SQLite3), snowflake (snowflake.com) clickhouse (ClickHouse)
  driver = "mysql"

  ## Data source name
  ## The format of the data source name is different for each database driver.
  ## See the plugin readme for details.
  data_source_name = "username:password@tcp(host:port)/dbname"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS} - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE}({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - tablename as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL
  init_sql = "SET sql_mode='ANSI_QUOTES';"

  ## Maximum amount of time a connection may be idle. "0s" means connections are
  ## never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections
  ## are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## NOTE: Due to the way TOML is parsed, tables must be at the END of the
  ## plugin definition, otherwise additional config options are read as part of the
  ## table

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on
  ## the right are the data types Telegraf will use when sending to a database.
  ##
  ## The database values used must be data types the destination database
  ## understands. It is up to the user to ensure that the selected data type is
  ## available in the database they are using. Refer to your database
  ## documentation for what data types are available and supported.
  #[outputs.sql.convert]
  #  integer              = "INT"
  #  real                 = "DOUBLE"
  #  text                 = "TEXT"
  #  timestamp            = "TIMESTAMP"
  #  defaultvalue         = "TEXT"
  #  unsigned             = "UNSIGNED"
  #  bool                 = "BOOL"
  #  ## This setting controls the behavior of the unsigned value. By default the
  #  ## setting will take the integer value and append the unsigned value to it. The other
  #  ## option is "literal", which will use the actual value the user provides to
  #  ## the unsigned option. This is useful for a database like ClickHouse where
  #  ## the unsigned value should use a value like "uint64".
  #  # conversion_style = "unsigned_suffix"

输入和输出集成示例

Apache Zookeeper

  1. 集群健康状况监控:集成 Zookeeper 插件以监控依赖 Zookeeper 进行配置管理和服务发现的分布式应用程序的健康状况和性能。通过跟踪会话计数、延迟和数据大小等指标,DevOps 团队可以在潜在问题升级之前识别出来,从而确保跨应用程序的高可用性和可靠性。

  2. 性能基准测试:在不同的工作负载场景中利用该插件来基准测试 Zookeeper 性能。这不仅有助于了解 Zookeeper 在负载下的行为,还有助于调整配置以优化吞吐量并减少高峰操作期间的延迟。

  3. 异常警报:将此插件与警报工具结合使用,以创建一个主动监控系统,如果特定的 Zookeeper 指标超过阈值限制(例如打开的文件描述符计数或高延迟值),则通知工程师。这使团队能够及时响应可能影响服务可靠性的问题。

  4. 历史数据分析:将 Zookeeper 插件收集的指标存储在时序数据库中,以分析历史性能趋势。这使团队能够评估更改随时间推移的影响,评估扩展操作的有效性,并为未来的容量需求进行规划。

MySQL

  1. 实时 Web 分析存储:利用该插件捕获网站性能指标并将其存储在 MySQL 中。此设置使团队能够监控用户交互、分析流量模式并根据实时数据洞察动态调整站点功能。

  2. IoT 设备监控:利用该插件从 IoT 传感器网络收集指标并将其记录到 MySQL 数据库中。此用例支持对设备运行状况和性能的持续监控,从而实现预测性维护和对异常的即时响应。

  3. 金融交易日志记录:记录具有精确时间戳的高频金融交易数据。这种方法支持强大的审计跟踪、实时欺诈检测以及全面的历史分析,以用于合规性和报告目的。

  4. 应用程序性能基准测试:将该插件与应用程序性能监控系统集成,以将指标记录到 MySQL 中。这有助于随着时间的推移进行详细的基准测试和趋势分析,使组织能够有效地识别性能瓶颈并优化资源分配。

反馈

感谢您成为我们社区的一份子!如果您有任何一般反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。当您将其视为时序数据时,任何数据都更有价值。借助 InfluxDB,第一的时序平台,与 Telegraf 一起构建以实现扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成