Apache Zookeeper 和 Microsoft SQL Server 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Apache Zookeeper 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 借助 InfluxDB,这个排名第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

Zookeeper Telegraf 插件收集并报告来自 Zookeeper 服务器的指标,从而促进监控和性能分析。 它利用“mntr”命令输出收集对于维护 Zookeeper 运行状况至关重要的基本统计信息。

Telegraf 的 SQL 插件有助于将指标存储在 SQL 数据库中。 当配置为 Microsoft SQL Server 时,它支持特定的 DSN 格式和架构要求,从而可以与 SQL Server 无缝集成。

集成详情

Apache Zookeeper

Telegraf 的 Zookeeper 插件旨在通过执行“mntr”命令来收集来自 Zookeeper 服务器的重要统计信息。 该插件充当监控工具,捕获与 Zookeeper 性能相关的重要指标,包括连接详细信息、延迟和各种操作统计信息,从而有助于评估 Zookeeper 部署的运行状况和效率。 与推荐在启用 Prometheus 指标提供程序时使用的 Prometheus 输入插件相比,Zookeeper 插件访问来自“mntr”命令的原始输出,使其专为不采用 Prometheus 进行指标报告的配置而定制。 这种独特的方法使管理员能够直接从 Zookeeper 收集 Java Properties 格式的指标,确保全面了解 Zookeeper 的运行状态,并能够及时响应性能异常。 它在 Zookeeper 作为集中式服务运行以维护分布式系统的配置信息和名称的环境中尤其出色,从而提供对于故障排除和容量规划至关重要的不可估量的见解。

Microsoft SQL Server

Telegraf 的 Microsoft SQL Server SQL 输出插件旨在通过动态创建与传入数据结构匹配的表和列来捕获和存储指标数据。 此集成利用 go-mssqldb 驱动程序,该驱动程序通过包含服务器、端口和数据库详细信息的 DSN 遵循 SQL Server 连接协议。 尽管由于单元测试有限,该驱动程序被认为是实验性的,但它为动态架构生成和数据插入提供了强大的支持,从而可以详细记录系统性能的时间戳记录。 尽管其状态为实验性,但这种灵活性使其成为需要可靠且精细的指标日志记录的环境的宝贵工具。

配置

Apache Zookeeper

[[inputs.zookeeper]]
  ## An array of address to gather stats about. Specify an ip or hostname
  ## with port. ie localhost:2181, 10.0.0.1:2181, etc.

  ## If no servers are specified, then localhost is used as the host.
  ## If no port is specified, 2181 is used
  servers = [":2181"]

  ## Timeout for metric collections from all servers. Minimum timeout is "1s".
  # timeout = "5s"

  ## Float Parsing - the initial implementation forced any value unable to be
  ## parsed as an int to be a string. Setting this to "float" will attempt to
  ## parse float values as floats and not strings. This would break existing
  ## metrics and may cause issues if a value switches between a float and int.
  # parse_floats = "string"

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## If false, skip chain & host verification
  # insecure_skip_verify = true

Microsoft SQL Server

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "mssql"

  ## Data source name
  ## For Microsoft SQL Server, the DSN typically includes the server, port, username, password, and database name.
  ## Example DSN: "sqlserver://username:password@localhost:1433?database=telegraf"
  data_source_name = "sqlserver://username:password@localhost:1433?database=telegraf"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## You can customize the mapping if needed.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

Apache Zookeeper

  1. 集群健康监控:集成 Zookeeper 插件以监控依赖 Zookeeper 进行配置管理和服务发现的分布式应用程序的健康状况和性能。 通过跟踪会话计数、延迟和数据大小等指标,DevOps 团队可以在潜在问题升级之前识别它们,从而确保跨应用程序的高可用性和可靠性。

  2. 性能基准测试:利用该插件在不同的工作负载场景中对 Zookeeper 性能进行基准测试。 这不仅有助于了解 Zookeeper 在负载下的行为方式,还有助于调整配置以优化吞吐量并减少高峰操作期间的延迟。

  3. 异常告警:将此插件与告警工具结合使用,创建一个主动监控系统,如果特定的 Zookeeper 指标超过阈值限制(例如打开的文件描述符计数或高延迟值),则通知工程师。 这使团队能够及时响应可能影响服务可靠性的问题。

  4. 历史数据分析:将 Zookeeper 插件收集的指标存储在时间序列数据库中,以分析历史性能趋势。 这使团队能够评估随时间推移的变化影响,评估扩展操作的有效性,并为未来的容量需求进行规划。

Microsoft SQL Server

  1. 企业应用程序监控:利用该插件捕获在 SQL Server 上运行的企业应用程序的详细性能指标。 这种设置使 IT 团队能够分析系统性能、跟踪事务时间并识别跨复杂多层环境的瓶颈。

  2. 动态基础设施审计:部署该插件以在 SQL Server 中创建基础设施变更和性能指标的动态审计日志。 此用例非常适合需要实时监控和系统性能历史分析以进行合规性和优化的组织。

  3. 自动化性能基准测试:使用该插件持续记录和分析 SQL Server 数据库的性能指标。 这实现了自动化基准测试,将历史数据与当前性能进行比较,有助于快速识别服务中的异常或降级。

  4. 集成 DevOps 仪表板:将该插件与 DevOps 监控工具集成,将来自 SQL Server 的实时指标馈送到集中式仪表板中。 这提供了应用程序运行状况的整体视图,使团队可以将 SQL Server 性能与应用程序级事件相关联,从而加快故障排除和主动维护。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它会更有价值。 借助 InfluxDB,这个排名第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成