Apache Zookeeper 和 InfluxDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,由 Telegraf 构建的排名第一的时间序列平台可进行扩展。

查看入门方法

输入和输出集成概述

Zookeeper Telegraf 插件从 Zookeeper 服务器收集和报告指标,从而促进监控和性能分析。它利用“mntr”命令输出收集对于维护 Zookeeper 运行状况至关重要的基本统计信息。

InfluxDB 插件将指标写入 InfluxDB HTTP 服务,从而可以高效地存储和检索时间序列数据。

集成详情

Apache Zookeeper

Telegraf 的 Zookeeper 插件旨在通过执行“mntr”命令从 Zookeeper 服务器收集重要统计信息。此插件充当监控工具,可捕获与 Zookeeper 性能相关的重要指标,包括连接详细信息、延迟和各种操作统计信息,从而有助于评估 Zookeeper 部署的运行状况和效率。与建议在启用 Prometheus 指标提供程序时使用的 Prometheus 输入插件相比,Zookeeper 插件访问来自“mntr”命令的原始输出,使其专为不采用 Prometheus 进行指标报告的配置量身定制。这种独特的方法允许管理员直接从 Zookeeper 收集 Java Properties 格式的指标,确保全面了解 Zookeeper 的运行状态,并能够及时响应性能异常。它在 Zookeeper 作为集中式服务运行的环境中尤其出色,用于维护分布式系统的配置信息和名称,从而为故障排除和容量规划提供不可估量的见解。

InfluxDB

InfluxDB Telegraf 插件用于将指标发送到 InfluxDB HTTP API,从而以结构化方式促进时间序列数据的存储和查询。此插件与 InfluxDB 无缝集成,提供基本功能,例如基于令牌的身份验证和对多个 InfluxDB 集群节点的支持,从而确保可靠且可扩展的数据摄取。通过其可配置性,用户可以指定组织、目标存储桶和 HTTP 特定设置等选项,从而灵活地定制数据的发送和存储方式。该插件还支持敏感数据的密钥管理,从而增强了生产环境中的安全性。此插件在现代可观测性堆栈中尤其有益,在这些堆栈中,实时分析和时间序列数据的存储至关重要。

配置

Apache Zookeeper

[[inputs.zookeeper]]
  ## An array of address to gather stats about. Specify an ip or hostname
  ## with port. ie localhost:2181, 10.0.0.1:2181, etc.

  ## If no servers are specified, then localhost is used as the host.
  ## If no port is specified, 2181 is used
  servers = [":2181"]

  ## Timeout for metric collections from all servers. Minimum timeout is "1s".
  # timeout = "5s"

  ## Float Parsing - the initial implementation forced any value unable to be
  ## parsed as an int to be a string. Setting this to "float" will attempt to
  ## parse float values as floats and not strings. This would break existing
  ## metrics and may cause issues if a value switches between a float and int.
  # parse_floats = "string"

  ## Optional TLS Config
  # enable_tls = false
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## If false, skip chain & host verification
  # insecure_skip_verify = true

InfluxDB

[[outputs.influxdb]]
  ## The full HTTP or UDP URL for your InfluxDB instance.
  ##
  ## Multiple URLs can be specified for a single cluster, only ONE of the
  ## urls will be written to each interval.
  # urls = ["unix:///var/run/influxdb.sock"]
  # urls = ["udp://127.0.0.1:8089"]
  # urls = ["http://127.0.0.1:8086"]

  ## Local address to bind when connecting to the server
  ## If empty or not set, the local address is automatically chosen.
  # local_address = ""

  ## The target database for metrics; will be created as needed.
  ## For UDP url endpoint database needs to be configured on server side.
  # database = "telegraf"

  ## The value of this tag will be used to determine the database.  If this
  ## tag is not set the 'database' option is used as the default.
  # database_tag = ""

  ## If true, the 'database_tag' will not be included in the written metric.
  # exclude_database_tag = false

  ## If true, no CREATE DATABASE queries will be sent.  Set to true when using
  ## Telegraf with a user without permissions to create databases or when the
  ## database already exists.
  # skip_database_creation = false

  ## Name of existing retention policy to write to.  Empty string writes to
  ## the default retention policy.  Only takes effect when using HTTP.
  # retention_policy = ""

  ## The value of this tag will be used to determine the retention policy.  If this
  ## tag is not set the 'retention_policy' option is used as the default.
  # retention_policy_tag = ""

  ## If true, the 'retention_policy_tag' will not be included in the written metric.
  # exclude_retention_policy_tag = false

  ## Write consistency (clusters only), can be: "any", "one", "quorum", "all".
  ## Only takes effect when using HTTP.
  # write_consistency = "any"

  ## Timeout for HTTP messages.
  # timeout = "5s"

  ## HTTP Basic Auth
  # username = "telegraf"
  # password = "metricsmetricsmetricsmetrics"

  ## HTTP User-Agent
  # user_agent = "telegraf"

  ## UDP payload size is the maximum packet size to send.
  # udp_payload = "512B"

  ## Optional TLS Config for use on HTTP connections.
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## HTTP Proxy override, if unset values the standard proxy environment
  ## variables are consulted to determine which proxy, if any, should be used.
  # http_proxy = "http://corporate.proxy:3128"

  ## Additional HTTP headers
  # http_headers = {"X-Special-Header" = "Special-Value"}

  ## HTTP Content-Encoding for write request body, can be set to "gzip" to
  ## compress body or "identity" to apply no encoding.
  # content_encoding = "gzip"

  ## When true, Telegraf will output unsigned integers as unsigned values,
  ## i.e.: "42u".  You will need a version of InfluxDB supporting unsigned
  ## integer values.  Enabling this option will result in field type errors if
  ## existing data has been written.
  # influx_uint_support = false

  ## When true, Telegraf will omit the timestamp on data to allow InfluxDB
  ## to set the timestamp of the data during ingestion. This is generally NOT
  ## what you want as it can lead to data points captured at different times
  ## getting omitted due to similar data.
  # influx_omit_timestamp = false

输入和输出集成示例

Apache Zookeeper

  1. 集群健康监控:集成 Zookeeper 插件以监控依赖 Zookeeper 进行配置管理和服务发现的分布式应用程序的健康状况和性能。通过跟踪会话计数、延迟和数据大小等指标,DevOps 团队可以在潜在问题升级之前识别它们,从而确保应用程序的高可用性和可靠性。

  2. 性能基准测试:在不同的工作负载场景中利用该插件来衡量 Zookeeper 性能。这不仅有助于了解 Zookeeper 在负载下的行为,还有助于调整配置以优化吞吐量并减少高峰操作期间的延迟。

  3. 异常警报:将此插件与警报工具结合使用,以创建一个主动监控系统,如果特定的 Zookeeper 指标超过阈值限制(例如打开的文件描述符计数或高延迟值),则该系统会通知工程师。这使团队能够及时响应可能影响服务可靠性的问题。

  4. 历史数据分析:将 Zookeeper 插件收集的指标存储在时间序列数据库中,以分析历史性能趋势。这使团队能够评估随时间推移的变化的影响,评估扩展操作的有效性,并为未来的容量需求制定计划。

InfluxDB

  1. 实时系统监控:利用 InfluxDB 插件捕获和存储来自一系列系统组件的指标,例如 CPU 使用率、内存消耗和磁盘 I/O。通过将这些指标推送到 InfluxDB 中,您可以创建一个实时仪表板,该仪表板可以实时可视化系统性能。这种设置不仅有助于识别性能瓶颈,还可以通过分析随时间推移的趋势来协助主动容量规划。

  2. Web 应用程序的性能跟踪:自动收集与 Web 应用程序性能相关的指标(例如请求持续时间、错误率和用户交互)并将它们推送到 InfluxDB。通过在您的监控堆栈中使用此插件,您可以使用存储的指标生成报告和分析,以帮助了解用户行为和应用程序效率,从而指导开发和优化工作。

  3. 物联网数据聚合:利用 InfluxDB Telegraf 插件从各种物联网设备收集传感器数据,并将其存储在集中的 InfluxDB 实例中。此用例使您能够分析环境或机器数据随时间推移的趋势和模式,从而促进更智能的决策和预测性维护策略。通过将物联网数据集成到 InfluxDB 中,组织可以利用历史数据分析的力量来推动创新和运营效率。

  4. 分析历史指标以进行预测:设置 InfluxDB 插件以将历史指标数据发送到 InfluxDB,并使用它来驱动预测模型。通过分析过去的性能指标,您可以创建预测未来趋势和需求的预测模型。此应用程序对于商业智能目的尤其有用,有助于组织根据历史使用模式为资源需求的波动做好准备。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。借助 InfluxDB,由 Telegraf 构建的排名第一的时间序列平台可进行扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并为可靠的消息处理提供带有 DynamoDB 的检查点功能。

查看集成