目录
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。InfluxDB 是排名第一的时间序列平台,旨在通过 Telegraf 进行扩展。
查看入门方法
输入和输出集成概述
此插件与 Apache HTTP 服务器的 mod_status 接口连接,以收集和报告服务器的性能指标。
此输出插件提供了一种可靠且高效的机制,用于将 Telegraf 收集的指标直接路由到 TimescaleDB 中。 通过利用 PostgreSQL 强大的生态系统以及 TimescaleDB 的时间序列优化,它支持高性能数据摄取和高级查询功能。
集成详情
Apache
Apache 插件使用 Apache HTTP 服务器的 mod_status 模块收集服务器性能信息。 它依赖于 mod_status 功能,该功能必须在 Apache 配置中显式启用才能访问机器可读的状态页面。 此插件允许用户获取与 Apache 运行性能相关的多个指标,包括工作进程状态、连接统计信息和服务器负载,从而有助于实时有效地监控和排除 Web 服务器性能故障。
TimescaleDB
TimescaleDB 是一个开源时间序列数据库,构建为 PostgreSQL 的扩展,旨在高效处理大规模、面向时间的数据。 TimescaleDB 于 2017 年推出,是为了响应对能够管理海量数据、具有高插入率和复杂查询的强大、可扩展解决方案日益增长的需求。 通过利用 PostgreSQL 熟悉的 SQL 接口并通过专门的时间序列功能对其进行增强,TimescaleDB 在希望将时间序列功能集成到现有关系数据库中的开发人员中迅速普及。 它的混合方法使用户可以受益于 PostgreSQL 的灵活性、可靠性和生态系统,同时为时间序列数据提供优化的性能。
该数据库在需要快速摄取数据点并结合对历史时期进行复杂分析查询的环境中尤其有效。 TimescaleDB 具有许多创新功能,例如透明地将数据分区为可管理块的超表和内置的连续聚合。 这些功能可以显着提高查询速度和资源效率。
配置
Apache
[[inputs.apache]]
## An array of URLs to gather from, must be directed at the machine
## readable version of the mod_status page including the auto query string.
## Default is "http://localhost/server-status?auto".
urls = ["http://localhost/server-status?auto"]
## Credentials for basic HTTP authentication.
# username = "myuser"
# password = "mypassword"
## Maximum time to receive response.
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
TimescaleDB
# Publishes metrics to a TimescaleDB database
[[outputs.postgresql]]
## Specify connection address via the standard libpq connection string:
## host=... user=... password=... sslmode=... dbname=...
## Or a URL:
## postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
##
## All connection parameters are optional. Environment vars are also supported.
## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
## All supported vars can be found here:
## https://postgresql.ac.cn/docs/current/libpq-envars.html
##
## Non-standard parameters:
## pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
## pool_min_conns (default: 0) - Minimum size of connection pool.
## pool_max_conn_lifetime (default: 0s) - Maximum connection age before closing.
## pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
## pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
# connection = ""
## Postgres schema to use.
# schema = "public"
## Store tags as foreign keys in the metrics table. Default is false.
# tags_as_foreign_keys = false
## Suffix to append to table name (measurement name) for the foreign tag table.
# tag_table_suffix = "_tag"
## Deny inserting metrics if the foreign tag can't be inserted.
# foreign_tag_constraint = false
## Store all tags as a JSONB object in a single 'tags' column.
# tags_as_jsonb = false
## Store all fields as a JSONB object in a single 'fields' column.
# fields_as_jsonb = false
## Name of the timestamp column
## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
# timestamp_column_name = "time"
## Type of the timestamp column
## Currently, "timestamp without time zone" and "timestamp with time zone"
## are supported
# timestamp_column_type = "timestamp without time zone"
## Templated statements to execute when creating a new table.
# create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }})''',
# ]
## Templated statements to execute when adding columns to a table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped. Points containing fields for which there is no
## column will have the field omitted.
# add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## Templated statements to execute when creating a new tag table.
# tag_table_create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
# ]
## Templated statements to execute when adding columns to a tag table.
## Set to an empty list to disable. Points containing tags for which there is
## no column will be skipped.
# tag_table_add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## The postgres data type to use for storing unsigned 64-bit integer values
## (Postgres does not have a native unsigned 64-bit integer type).
## The value can be one of:
## numeric - Uses the PostgreSQL "numeric" data type.
## uint8 - Requires pguint extension (https://github.com/petere/pguint)
# uint64_type = "numeric"
## When using pool_max_conns > 1, and a temporary error occurs, the query is
## retried with an incremental backoff. This controls the maximum duration.
# retry_max_backoff = "15s"
## Approximate number of tag IDs to store in in-memory cache (when using
## tags_as_foreign_keys). This is an optimization to skip inserting known
## tag IDs. Each entry consumes approximately 34 bytes of memory.
# tag_cache_size = 100000
## Cut column names at the given length to not exceed PostgreSQL's
## 'identifier length' limit (default: no limit)
## (see https://postgresql.ac.cn/docs/current/limits.html)
## Be careful to not create duplicate column names!
# column_name_length_limit = 0
## Enable & set the log level for the Postgres driver.
# log_level = "warn" # trace, debug, info, warn, error, none
输入和输出集成示例
Apache
-
实时性能监控:使用 Apache 输入插件设置实时仪表板,显示 Apache 服务器的关键性能指标。 通过可视化 BusyWorkers 和负载平均值等指标,您可以快速识别性能瓶颈和服务器运行状况问题,从而帮助主动管理 Web 流量负载。
-
服务器问题自动警报:根据此插件收集的指标实施警报,以便在发生性能下降时通知管理员。 例如,如果
BusyWorkers
指标超过某个阈值,则可以触发自动警报,确保及时响应事件以维护正常运行时间和服务的可靠性。 -
历史性能分析:将 Apache 插件收集的数据与长期存储解决方案结合使用,以跟踪一段时间内的性能趋势。 这种累积的数据有助于了解使用模式、预测资源需求以及就服务器扩展或优化做出明智的决策。
-
跨系统监控:使用 Telegraf 的功能集成从 Apache 收集的指标以及来自 Web 堆栈其他组件的指标,以将数据发送到集中式监控解决方案。 这种整体视图可以简化不同技术之间的故障排除和协调,确保整个系统的最佳系统性能。
TimescaleDB
-
实时物联网数据摄取:使用该插件实时收集和存储来自数千个物联网设备的传感器数据。 此设置有助于立即分析,帮助组织监控运营效率并快速响应不断变化的条件。
-
云应用程序性能监控:利用该插件将来自分布式云应用程序的详细性能指标馈送到 TimescaleDB 中。 这种集成支持实时仪表板和警报,使团队能够快速识别和缓解性能瓶颈。
-
历史数据分析和报告:实施一个系统,将长期指标存储在 TimescaleDB 中以进行全面的历史分析。 这种方法使企业能够执行趋势分析、生成详细报告并根据存档的时间序列数据做出数据驱动的决策。
-
自适应警报和异常检测:将插件与自动异常检测工作流程集成。 通过将指标持续流式传输到 TimescaleDB,机器学习模型可以分析数据模式并在发生异常时触发警报,从而增强系统可靠性和主动维护。
反馈
感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。
强大的性能,无限的扩展能力
收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。InfluxDB 是排名第一的时间序列平台,旨在通过 Telegraf 进行扩展。
查看入门方法