Apache 和 Clickhouse 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

这不是实时大规模查询的推荐配置。为了实现查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Apache 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件与 Apache HTTP 服务器的 mod_status 接口连接,以收集和报告服务器的性能指标。

Telegraf 的 SQL 插件使用简单的表架构和动态列生成,将收集的指标发送到 SQL 数据库。当配置为 ClickHouse 时,它会调整 DSN 格式和类型转换设置,以确保无缝数据集成。

集成详情

Apache

Apache 插件使用 Apache HTTP 服务器的 mod_status 模块收集服务器性能信息。它依赖于 mod_status 功能,该功能必须在 Apache 配置中显式启用才能访问机器可读的状态页面。此插件允许用户获取与 Apache 运行性能相关的多个指标,包括工作进程状态、连接统计信息和服务器负载,从而有助于实时有效地监控和排查 Web 服务器性能问题。

Clickhouse

Telegraf 的 SQL 插件旨在通过基于传入指标动态创建表和列,将指标数据写入 SQL 数据库。当配置为 ClickHouse 时,它使用 clickhouse-go v1.5.4 驱动程序,该驱动程序采用独特的 DSN 格式和一组专门的类型转换规则,将 Telegraf 的数据类型直接映射到 ClickHouse 的原生类型。这种方法确保了高吞吐量环境中的最佳存储和检索性能,使其非常适合实时分析和大规模数据仓库。动态模式创建和精确的类型映射实现了详细的时序数据日志记录,这对于监控现代分布式系统至关重要。

配置

Apache

[[inputs.apache]]
  ## An array of URLs to gather from, must be directed at the machine
  ## readable version of the mod_status page including the auto query string.
  ## Default is "http://localhost/server-status?auto".
  urls = ["http://localhost/server-status?auto"]

  ## Credentials for basic HTTP authentication.
  # username = "myuser"
  # password = "mypassword"

  ## Maximum time to receive response.
  # response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Clickhouse

[[outputs.sql]]
  ## Database driver
  ## Valid options include mssql, mysql, pgx, sqlite, snowflake, clickhouse
  driver = "clickhouse"

  ## Data source name
  ## For ClickHouse, the DSN follows the clickhouse-go v1.5.4 format.
  ## Example DSN: "tcp://localhost:9000?debug=true"
  data_source_name = "tcp://localhost:9000?debug=true"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion for ClickHouse.
  ## The conversion maps Telegraf metric types to ClickHouse native data types.
  [outputs.sql.convert]
    conversion_style = "literal"
    integer          = "Int64"
    text             = "String"
    timestamp        = "DateTime"
    defaultvalue     = "String"
    unsigned         = "UInt64"
    bool             = "UInt8"
    real             = "Float64"

输入和输出集成示例

Apache

  1. 实时性能监控:使用 Apache 输入插件设置实时仪表板,显示 Apache 服务器的关键性能指标。通过可视化 BusyWorkers 和负载平均值等指标,您可以快速识别性能瓶颈和服务器健康问题,从而帮助主动管理 Web 流量负载。

  2. 服务器问题自动警报:根据此插件收集的指标实施警报,以便在性能下降时通知管理员。例如,如果 BusyWorkers 指标超过某个阈值,则可以触发自动警报,确保及时响应事件,以维护正常运行时间和服务的可靠性。

  3. 历史性能分析:将 Apache 插件收集的数据与长期存储解决方案相结合,以跟踪一段时间内的性能趋势。这种累积的数据有助于了解使用模式、预测资源需求以及制定有关服务器扩展或优化的明智决策。

  4. 跨系统监控:使用 Telegraf 的功能将从 Apache 收集的指标与来自 Web 堆栈其他组件的指标集成,以将数据发送到集中式监控解决方案。这种整体视图可以简化不同技术之间的故障排除和协调,确保整个系统的最佳性能。

Clickhouse

  1. 高容量数据实时分析:使用插件将来自大规模系统的流式指标馈送到 ClickHouse。此设置支持超快的查询性能和近乎实时的分析,非常适合监控高流量应用程序。

  2. 时序数据仓库:将插件与 ClickHouse 集成以创建强大的时序数据仓库。此用例允许组织存储详细的历史指标,并执行复杂的查询以进行趋势分析和容量规划。

  3. 分布式环境中的可扩展监控:利用插件在 ClickHouse 中为每种指标类型动态创建表,从而更容易管理和查询来自大量分布式系统的数据,而无需事先定义模式。

  4. 物联网部署的优化存储:部署插件以将来自物联网传感器的数据摄取到 ClickHouse 中。其高效的模式创建和原生类型映射有助于处理海量数据,从而实现实时监控和预测性维护。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成