Apache 和 Azure Data Explorer 集成

强大的性能和简易的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了获得查询和压缩优化、高速摄取和高可用性,您可能需要考虑 Apache 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

此插件与 Apache HTTP 服务器的 mod_status 接口,以收集和报告服务器的性能指标。

Azure Data Explorer 插件允许与 Azure Data Explorer 集成指标收集,使用户能够高效地分析和查询其遥测数据。借助此插件,用户可以配置摄取设置以满足其需求,并利用 Azure 强大的分析功能。

集成详细信息

Apache

Apache 插件使用 Apache HTTP 服务器的 mod_status 模块收集服务器性能信息。它依赖于 mod_status 功能,该功能必须在 Apache 配置中显式启用才能访问机器可读的状态页面。此插件允许用户获取多个与 Apache 运行性能相关的指标,包括工作进程状态、连接统计信息和服务器负载,从而有助于实时有效地监控和排除 Web 服务器性能故障。

Azure Data Explorer

Azure Data Explorer 插件允许用户将从各种 Telegraf 输入插件收集的指标、日志和时序数据写入 Azure Data Explorer、Azure Synapse 和 Fabric 中的 Real-Time Analytics。此集成充当桥梁,使应用程序和服务能够有效地监控其性能指标或日志。Azure Data Explorer 针对大量不同数据类型的分析进行了优化,使其成为云环境中实时分析和监控解决方案的绝佳选择。该插件使用户能够根据其要求配置指标摄取,动态定义表架构,并设置各种摄取方法,同时保留数据库操作所需的角色和权限方面的灵活性。这支持利用云服务的现代应用程序的可扩展且安全的监控设置。

配置

Apache

[[inputs.apache]]
  ## An array of URLs to gather from, must be directed at the machine
  ## readable version of the mod_status page including the auto query string.
  ## Default is "http://localhost/server-status?auto".
  urls = ["http://localhost/server-status?auto"]

  ## Credentials for basic HTTP authentication.
  # username = "myuser"
  # password = "mypassword"

  ## Maximum time to receive response.
  # response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Azure Data Explorer

[[outputs.azure_data_explorer]]
  ## The URI property of the Azure Data Explorer resource on Azure
  ## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
  endpoint_url = ""

  ## The Azure Data Explorer database that the metrics will be ingested into.
  ## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
  ## ex: "exampledatabase"
  database = ""

  ## Timeout for Azure Data Explorer operations
  # timeout = "20s"

  ## Type of metrics grouping used when pushing to Azure Data Explorer.
  ## Default is "TablePerMetric" for one table per different metric.
  ## For more information, please check the plugin README.
  # metrics_grouping_type = "TablePerMetric"

  ## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
  # table_name = ""

  ## Creates tables and relevant mapping if set to true(default).
  ## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
  # create_tables = true

  ##  Ingestion method to use.
  ##  Available options are
  ##    - managed  --  streaming ingestion with fallback to batched ingestion or the "queued" method below
  ##    - queued   --  queue up metrics data and process sequentially
  # ingestion_type = "queued"

输入和输出集成示例

Apache

  1. 实时性能监控:使用 Apache 输入插件设置实时仪表板,显示 Apache 服务器的关键性能指标。通过可视化 BusyWorkers 和平均负载等指标,您可以快速识别性能瓶颈和服务器运行状况问题,从而帮助主动管理 Web 流量负载。

  2. 服务器问题自动告警:根据此插件收集的指标实施告警,以便在性能下降时通知管理员。例如,如果 BusyWorkers 指标超过某个阈值,则可以触发自动告警,确保及时响应事件,以维护正常运行时间和服务的可靠性。

  3. 历史性能分析:将 Apache 插件收集的数据与长期存储解决方案结合使用,以跟踪一段时间内的性能趋势。这些累积的数据有助于了解使用模式、预测资源需求以及就服务器扩展或优化做出明智的决策。

  4. 跨系统监控:使用 Telegraf 的功能将从 Apache 收集的指标与 Web 堆栈的其他组件的指标集成,以将数据发送到集中式监控解决方案。这种整体视图可以简化不同技术之间的故障排除和协调,从而确保整个系统的最佳性能。

Azure Data Explorer

  1. 实时监控仪表板:通过使用此插件将来自各种服务的指标集成到 Azure Data Explorer 中,组织可以构建反映实时性能指标的综合仪表板。这使团队能够主动响应性能问题并立即优化系统运行状况。

  2. 集中式日志管理:利用 Azure Data Explorer 来整合来自多个应用程序和服务的日志。通过使用该插件,组织可以简化其日志分析流程,从而更轻松地搜索、筛选和从随时间累积的历史数据中获取见解。

  3. 数据驱动的告警系统:通过根据通过此插件发送的指标配置告警来增强监控功能。组织可以设置阈值并自动执行事件响应,从而显着减少停机时间并提高关键操作的可靠性。

  4. 机器学习模型训练:通过利用发送到 Azure Data Explorer 的数据,组织可以执行大规模分析并准备数据以供馈送到机器学习模型中。此插件支持构建可以随后用于预测分析的数据结构,从而提高决策能力。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都更有价值。InfluxDB 是排名第一的时序平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成