AMQP 和 Splunk 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑AMQP 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,这是 #1 的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

AMQP Consumer 输入插件允许您从兼容 AMQP 0-9-1 的消息代理(如 RabbitMQ)中摄取数据,从而实现无缝数据收集,以用于监控和分析。

此输出插件有助于将 Telegraf 收集的指标直接流式传输到 Splunk,通过 HTTP Event Collector,从而轻松与 Splunk 强大的分析平台集成。

集成详情

AMQP

此插件为 AMQP 0-9-1 提供了一个消费者,RabbitMQ 是其一个突出的实现。AMQP 或高级消息队列协议最初是为了实现网络中不同系统之间可靠的、可互操作的消息传递而开发的。该插件使用配置的队列和绑定键从主题交换中读取指标,从而提供了一种灵活高效的方式,用于从兼容 AMQP 的消息传递系统中收集数据。这使用户能够利用现有的 RabbitMQ 实现来有效地监控其应用程序,方法是捕获详细的指标以进行分析和警报。

Splunk

使用 Telegraf 可以轻松地从许多不同的来源收集和聚合指标,并将它们发送到 Splunk。通过使用 HTTP 输出插件和专门的 Splunk 指标序列化器,此配置确保了高效的数据摄取到 Splunk 的指标索引中。HEC 是 Splunk 提供的一种高级机制,旨在通过 HTTP 或 HTTPS 可靠地大规模收集数据,为安全、监控和分析工作负载提供关键功能。Telegraf 与 Splunk HEC 的集成通过利用标准 HTTP 协议、内置身份验证和结构化数据序列化来简化操作,从而优化指标摄取并实现即时可操作的见解。

配置

AMQP

[[inputs.amqp_consumer]]
  ## Brokers to consume from.  If multiple brokers are specified a random broker
  ## will be selected anytime a connection is established.  This can be
  ## helpful for load balancing when not using a dedicated load balancer.
  brokers = ["amqp://localhost:5672/influxdb"]

  ## Authentication credentials for the PLAIN auth_method.
  # username = ""
  # password = ""

  ## Name of the exchange to declare.  If unset, no exchange will be declared.
  exchange = "telegraf"

  ## Exchange type; common types are "direct", "fanout", "topic", "header", "x-consistent-hash".
  # exchange_type = "topic"

  ## If true, exchange will be passively declared.
  # exchange_passive = false

  ## Exchange durability can be either "transient" or "durable".
  # exchange_durability = "durable"

  ## Additional exchange arguments.
  # exchange_arguments = { }
  # exchange_arguments = {"hash_property" = "timestamp"}

  ## AMQP queue name.
  queue = "telegraf"

  ## AMQP queue durability can be "transient" or "durable".
  queue_durability = "durable"

  ## If true, queue will be passively declared.
  # queue_passive = false

  ## Additional arguments when consuming from Queue
  # queue_consume_arguments = { }
  # queue_consume_arguments = {"x-stream-offset" = "first"}

  ## A binding between the exchange and queue using this binding key is
  ## created.  If unset, no binding is created.
  binding_key = "#"

  ## Maximum number of messages server should give to the worker.
  # prefetch_count = 50

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Timeout for establishing the connection to a broker
  # timeout = "30s"

  ## Auth method. PLAIN and EXTERNAL are supported
  ## Using EXTERNAL requires enabling the rabbitmq_auth_mechanism_ssl plugin as
  ## described here: https://rabbitmq.cn/plugins.html
  # auth_method = "PLAIN"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Content encoding for message payloads, can be set to
  ## "gzip", "identity" or "auto"
  ## - Use "gzip" to decode gzip
  ## - Use "identity" to apply no encoding
  ## - Use "auto" determine the encoding using the ContentEncoding header
  # content_encoding = "identity"

  ## Maximum size of decoded message.
  ## Acceptable units are B, KiB, KB, MiB, MB...
  ## Without quotes and units, interpreted as size in bytes.
  # max_decompression_size = "500MB"

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Splunk

[[outputs.http]]
  ## Splunk HTTP Event Collector endpoint
  url = "https://splunk.example.com:8088/services/collector"

  ## HTTP method to use
  method = "POST"

  ## Splunk authentication token
  headers = {"Authorization" = "Splunk YOUR_SPLUNK_HEC_TOKEN"}

  ## Serializer for formatting metrics specifically for Splunk
  data_format = "splunkmetric"

  ## Optional parameters
  # timeout = "5s"
  # insecure_skip_verify = false
  # tls_ca = "/path/to/ca.pem"
  # tls_cert = "/path/to/cert.pem"
  # tls_key = "/path/to/key.pem"

输入和输出集成示例

AMQP

  1. 集成应用程序指标与 AMQP:使用 AMQP Consumer 插件来收集发布到 RabbitMQ 交换机的应用程序指标。通过配置插件来监听特定的队列,团队可以深入了解应用程序性能,跟踪请求速率、错误计数和延迟指标,所有这些都是实时的。此设置不仅有助于异常检测,而且还为容量规划和系统优化提供有价值的数据。

  2. 事件驱动的监控:配置 AMQP Consumer 以在应用程序内满足某些条件时触发特定的监控事件。例如,如果收到指示高错误率的消息,插件可以将此数据馈送到监控工具,生成警报或扩展事件。此集成可以提高对问题的响应能力,并自动化部分操作工作流程。

  3. 跨平台数据聚合:利用 AMQP Consumer 插件来整合来自分布在不同平台上的各种应用程序的指标。通过使用 RabbitMQ 作为集中式消息代理,组织可以统一其监控数据,从而允许通过 Telegraf 进行全面的分析和仪表板,从而保持跨异构环境的可见性。

  4. 实时日志处理:扩展 AMQP Consumer 的使用范围,以捕获发送到 RabbitMQ 交换机的日志数据,实时处理日志以用于监控和警报目的。此应用程序确保通过分析日志模式、趋势和异常情况(在发生时)来快速检测和解决操作问题。

Splunk

  1. 实时安全分析:使用此插件将来自各种应用程序的安全相关指标实时流式传输到 Splunk。组织可以通过关联跨系统的数据流来即时检测威胁,从而显着缩短检测和响应时间。

  2. 多云基础设施监控:集成 Telegraf 以将来自多云环境的指标直接整合到 Splunk 中,从而实现全面的可见性和操作智能。这种统一的监控使团队能够快速检测性能问题并简化云资源管理。

  3. 动态容量规划:部署该插件以将来自容器编排平台(如 Kubernetes)的资源指标持续推送到 Splunk 中。通过利用 Splunk 的分析功能,团队可以自动化预测性扩展和资源分配,避免资源瓶颈并最大限度地降低成本。

  4. 自动化事件响应工作流程:将此插件与 Splunk 的警报系统结合使用,以创建自动化事件响应工作流程。Telegraf 收集的指标触发实时警报和自动化修复脚本,确保快速解决问题并保持高系统可用性。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提供意见。请在InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都更有价值。借助 InfluxDB,这是 #1 的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并为可靠的消息处理提供带有 DynamoDB 的检查点功能。

查看集成