AMQP 和 Redis 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了获得查询和压缩优化、高速摄取和高可用性,您可能需要考虑AMQP 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都会更有价值。借助 InfluxDB,这个排名第一的时序平台旨在与 Telegraf 一起扩展。

查看开始使用的方法

输入和输出集成概览

AMQP Consumer 输入插件允许您从符合 AMQP 0-9-1 标准的消息代理(如 RabbitMQ)中摄取数据,从而为监控和分析目的实现无缝数据收集。

Redis 插件使用户能够将 Telegraf 收集的指标直接发送到 Redis。此集成非常适合需要强大的时序数据存储和分析的应用程序。

集成详情

AMQP

此插件为 AMQP 0-9-1 提供了一个消费者,RabbitMQ 是其突出的实现之一。AMQP 或高级消息队列协议最初是为了实现网络中不同系统之间可靠的、可互操作的消息传递而开发的。该插件使用配置的队列和绑定键从主题交换中读取指标,从而提供了一种灵活高效的方式来从符合 AMQP 标准的消息传递系统中收集数据。这使用户能够利用现有的 RabbitMQ 实现来有效地监控他们的应用程序,通过捕获详细的指标进行分析和警报。

Redis

Redis Telegraf 插件旨在将指标写入 RedisTimeSeries,这是一个专门用于时序数据的 Redis 数据库模块。此插件促进了 Telegraf 与 RedisTimeSeries 的集成,从而可以高效地存储和检索带时间戳的数据。借助 RedisTimeSeries,用户可以利用增强的功能来管理时序数据,包括聚合视图和范围查询。该插件提供了各种配置选项,以实现安全连接到您的 Redis 数据库所需的灵活性,包括对身份验证、超时、数据类型转换和 TLS 配置的支持。底层技术利用了 Redis 的效率和可扩展性,使其成为高容量指标环境的绝佳选择,在这些环境中,实时处理至关重要。

配置

AMQP

[[inputs.amqp_consumer]]
  ## Brokers to consume from.  If multiple brokers are specified a random broker
  ## will be selected anytime a connection is established.  This can be
  ## helpful for load balancing when not using a dedicated load balancer.
  brokers = ["amqp://localhost:5672/influxdb"]

  ## Authentication credentials for the PLAIN auth_method.
  # username = ""
  # password = ""

  ## Name of the exchange to declare.  If unset, no exchange will be declared.
  exchange = "telegraf"

  ## Exchange type; common types are "direct", "fanout", "topic", "header", "x-consistent-hash".
  # exchange_type = "topic"

  ## If true, exchange will be passively declared.
  # exchange_passive = false

  ## Exchange durability can be either "transient" or "durable".
  # exchange_durability = "durable"

  ## Additional exchange arguments.
  # exchange_arguments = { }
  # exchange_arguments = {"hash_property" = "timestamp"}

  ## AMQP queue name.
  queue = "telegraf"

  ## AMQP queue durability can be "transient" or "durable".
  queue_durability = "durable"

  ## If true, queue will be passively declared.
  # queue_passive = false

  ## Additional arguments when consuming from Queue
  # queue_consume_arguments = { }
  # queue_consume_arguments = {"x-stream-offset" = "first"}

  ## A binding between the exchange and queue using this binding key is
  ## created.  If unset, no binding is created.
  binding_key = "#"

  ## Maximum number of messages server should give to the worker.
  # prefetch_count = 50

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Timeout for establishing the connection to a broker
  # timeout = "30s"

  ## Auth method. PLAIN and EXTERNAL are supported
  ## Using EXTERNAL requires enabling the rabbitmq_auth_mechanism_ssl plugin as
  ## described here: https://rabbitmq.cn/plugins.html
  # auth_method = "PLAIN"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Content encoding for message payloads, can be set to
  ## "gzip", "identity" or "auto"
  ## - Use "gzip" to decode gzip
  ## - Use "identity" to apply no encoding
  ## - Use "auto" determine the encoding using the ContentEncoding header
  # content_encoding = "identity"

  ## Maximum size of decoded message.
  ## Acceptable units are B, KiB, KB, MiB, MB...
  ## Without quotes and units, interpreted as size in bytes.
  # max_decompression_size = "500MB"

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Redis

[[outputs.redistimeseries]]
  ## The address of the RedisTimeSeries server.
  address = "127.0.0.1:6379"

  ## Redis ACL credentials
  # username = ""
  # password = ""
  # database = 0

  ## Timeout for operations such as ping or sending metrics
  # timeout = "10s"

  ## Enable attempt to convert string fields to numeric values
  ## If "false" or in case the string value cannot be converted the string
  ## field will be dropped.
  # convert_string_fields = true

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  # insecure_skip_verify = false

输入和输出集成示例

AMQP

  1. 将应用程序指标与 AMQP 集成:使用 AMQP Consumer 插件来收集发布到 RabbitMQ 交换机的应用程序指标。通过配置插件来监听特定的队列,团队可以深入了解应用程序性能、跟踪请求速率、错误计数和延迟指标,所有这些都是实时的。这种设置不仅有助于异常检测,而且还为容量规划和系统优化提供有价值的数据。

  2. 事件驱动的监控:每当应用程序内满足某些条件时,配置 AMQP Consumer 以触发特定的监控事件。例如,如果收到指示高错误率的消息,插件可以将此数据馈送到监控工具中,生成警报或扩展事件。这种集成可以提高对问题的响应速度,并自动化部分操作工作流程。

  3. 跨平台数据聚合:利用 AMQP Consumer 插件来整合来自分布在不同平台上的各种应用程序的指标。通过利用 RabbitMQ 作为集中式消息代理,组织可以统一其监控数据,从而允许通过 Telegraf 进行全面的分析和仪表板展示,从而在异构环境中保持可见性。

  4. 实时日志处理:扩展 AMQP Consumer 的使用,以捕获发送到 RabbitMQ 交换机的日志数据,实时处理日志以进行监控和警报目的。此应用程序通过分析日志模式、趋势和异常情况(在它们发生时),确保及时检测和解决操作问题。

Redis

  1. 监控物联网传感器数据:利用 Redis Telegraf 插件来实时收集和存储来自物联网传感器的数据。通过将插件连接到 RedisTimeSeries 数据库,用户可以分析温度、湿度或其他环境因素的趋势。高效查询历史传感器数据的能力将有助于预测性维护,并有助于资源管理。

  2. 金融市场数据聚合:使用此插件来跟踪和存储来自各种来源的时间敏感的金融数据。通过将指标发送到 Redis,金融机构可以聚合和分析市场趋势或价格随时间的变化,为他们提供从可靠的时序分析中得出的可操作的见解。

  3. 应用程序性能监控 (APM):实施 Redis 插件来收集应用程序性能指标,例如响应时间和 CPU 使用率。用户可以使用 RedisTimeSeries 可视化其应用程序的性能随时间的变化,从而使他们能够快速识别瓶颈并优化资源分配。

  4. 能源消耗跟踪:利用此插件来监控建筑物随时间的能源使用情况。通过与智能电表集成并将数据发送到 RedisTimeSeries,市政当局或企业可以分析能源消耗模式,帮助实施节能措施和可持续发展实践。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您的投入。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时序数据时,它都会更有价值。借助 InfluxDB,这个排名第一的时序平台旨在与 Telegraf 一起扩展。

查看开始使用的方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并为可靠的消息处理提供了使用 DynamoDB 的检查点功能。

查看集成