AMQP 和 IoTDB 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了查询和压缩优化、高速摄取和高可用性,您可能需要考虑 AMQP 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时序数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 借助 InfluxDB,排名第一的、旨在与 Telegraf 协同扩展的时序平台。

查看入门方法

输入和输出集成概览

AMQP Consumer 输入插件允许您从兼容 AMQP 0-9-1 的消息代理(例如 RabbitMQ)摄取数据,从而为监控和分析目的实现无缝数据收集。

此插件将 Telegraf 指标保存到 Apache IoTDB 后端,支持会话连接和数据插入。

集成详情

AMQP

此插件为 AMQP 0-9-1 提供了一个消费者,RabbitMQ 是其一个突出的实现。 AMQP 或高级消息队列协议最初是为了实现网络中不同系统之间可靠的、可互操作的消息传递而开发的。 该插件使用配置的队列和绑定键从主题交换中读取指标,从而提供了一种灵活高效的方式来从兼容 AMQP 的消息传递系统中收集数据。 这使用户能够利用现有的 RabbitMQ 实施来有效地监控其应用程序,方法是捕获详细的指标以进行分析和告警。

IoTDB

Apache IoTDB(物联网数据库)是一种物联网原生数据库,具有用于数据管理和分析的高性能,可部署在边缘和云端。 其轻量级架构、高性能和丰富的功能集非常适合物联网工业领域中的海量数据存储、高速数据摄取和复杂分析。 IoTDB 与 Apache Hadoop、Spark 和 Flink 深度集成,这进一步增强了其处理大规模数据和复杂处理任务的能力。

配置

AMQP

[[inputs.amqp_consumer]]
  ## Brokers to consume from.  If multiple brokers are specified a random broker
  ## will be selected anytime a connection is established.  This can be
  ## helpful for load balancing when not using a dedicated load balancer.
  brokers = ["amqp://localhost:5672/influxdb"]

  ## Authentication credentials for the PLAIN auth_method.
  # username = ""
  # password = ""

  ## Name of the exchange to declare.  If unset, no exchange will be declared.
  exchange = "telegraf"

  ## Exchange type; common types are "direct", "fanout", "topic", "header", "x-consistent-hash".
  # exchange_type = "topic"

  ## If true, exchange will be passively declared.
  # exchange_passive = false

  ## Exchange durability can be either "transient" or "durable".
  # exchange_durability = "durable"

  ## Additional exchange arguments.
  # exchange_arguments = { }
  # exchange_arguments = {"hash_property" = "timestamp"}

  ## AMQP queue name.
  queue = "telegraf"

  ## AMQP queue durability can be "transient" or "durable".
  queue_durability = "durable"

  ## If true, queue will be passively declared.
  # queue_passive = false

  ## Additional arguments when consuming from Queue
  # queue_consume_arguments = { }
  # queue_consume_arguments = {"x-stream-offset" = "first"}

  ## A binding between the exchange and queue using this binding key is
  ## created.  If unset, no binding is created.
  binding_key = "#"

  ## Maximum number of messages server should give to the worker.
  # prefetch_count = 50

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Timeout for establishing the connection to a broker
  # timeout = "30s"

  ## Auth method. PLAIN and EXTERNAL are supported
  ## Using EXTERNAL requires enabling the rabbitmq_auth_mechanism_ssl plugin as
  ## described here: https://rabbitmq.cn/plugins.html
  # auth_method = "PLAIN"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Content encoding for message payloads, can be set to
  ## "gzip", "identity" or "auto"
  ## - Use "gzip" to decode gzip
  ## - Use "identity" to apply no encoding
  ## - Use "auto" determine the encoding using the ContentEncoding header
  # content_encoding = "identity"

  ## Maximum size of decoded message.
  ## Acceptable units are B, KiB, KB, MiB, MB...
  ## Without quotes and units, interpreted as size in bytes.
  # max_decompression_size = "500MB"

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

IoTDB

[[outputs.iotdb]]
  ## Configuration of IoTDB server connection
  host = "127.0.0.1"
  # port = "6667"

  ## Configuration of authentication
  # user = "root"
  # password = "root"

  ## Timeout to open a new session.
  ## A value of zero means no timeout.
  # timeout = "5s"

  ## Configuration of type conversion for 64-bit unsigned int
  ## IoTDB currently DOES NOT support unsigned integers (version 13.x).
  ## 32-bit unsigned integers are safely converted into 64-bit signed integers by the plugin,
  ## however, this is not true for 64-bit values in general as overflows may occur.
  ## The following setting allows to specify the handling of 64-bit unsigned integers.
  ## Available values are:
  ##   - "int64"       --  convert to 64-bit signed integers and accept overflows
  ##   - "int64_clip"  --  convert to 64-bit signed integers and clip the values on overflow to 9,223,372,036,854,775,807
  ##   - "text"        --  convert to the string representation of the value
  # uint64_conversion = "int64_clip"

  ## Configuration of TimeStamp
  ## TimeStamp is always saved in 64bits int. timestamp_precision specifies the unit of timestamp.
  ## Available value:
  ## "second", "millisecond", "microsecond", "nanosecond"(default)
  # timestamp_precision = "nanosecond"

  ## Handling of tags
  ## Tags are not fully supported by IoTDB.
  ## A guide with suggestions on how to handle tags can be found here:
  ##     https://iotdb.apache.org/UserGuide/Master/API/InfluxDB-Protocol.html
  ##
  ## Available values are:
  ##   - "fields"     --  convert tags to fields in the measurement
  ##   - "device_id"  --  attach tags to the device ID
  ##
  ## For Example, a metric named "root.sg.device" with the tags `tag1: "private"`  and  `tag2: "working"` and
  ##  fields `s1: 100`  and `s2: "hello"` will result in the following representations in IoTDB
  ##   - "fields"     --  root.sg.device, s1=100, s2="hello", tag1="private", tag2="working"
  ##   - "device_id"  --  root.sg.device.private.working, s1=100, s2="hello"
  # convert_tags_to = "device_id"

  ## Handling of unsupported characters
  ## Some characters in different versions of IoTDB are not supported in path name
  ## A guide with suggetions on valid paths can be found here:
  ## for iotdb 0.13.x           -> https://iotdb.apache.org/UserGuide/V0.13.x/Reference/Syntax-Conventions.html#identifiers
  ## for iotdb 1.x.x and above  -> https://iotdb.apache.org/UserGuide/V1.3.x/User-Manual/Syntax-Rule.html#identifier
  ##
  ## Available values are:
  ##   - "1.0", "1.1", "1.2", "1.3"  -- enclose in `` the world having forbidden character 
  ##                                    such as @ $ # : [ ] { } ( ) space
  ##   - "0.13"                      -- enclose in `` the world having forbidden character 
  ##                                    such as space
  ##
  ## Keep this section commented if you don't want to sanitize the path
  # sanitize_tag = "1.3"

输入和输出集成示例

AMQP

  1. 将应用程序指标与 AMQP 集成:使用 AMQP Consumer 插件来收集发布到 RabbitMQ 交换机的应用程序指标。 通过配置插件以侦听特定队列,团队可以深入了解应用程序性能、跟踪请求率、错误计数和延迟指标,所有这些都是实时的。 这种设置不仅有助于异常检测,而且还为容量规划和系统优化提供了有价值的数据。

  2. 事件驱动的监控:配置 AMQP Consumer 以在应用程序内满足某些条件时触发特定的监控事件。 例如,如果收到指示高错误率的消息,则插件可以将此数据馈送到监控工具,从而生成警报或扩展事件。 这种集成可以提高对问题的响应速度并自动化部分操作工作流程。

  3. 跨平台数据聚合:利用 AMQP Consumer 插件来整合来自分布在不同平台上的各种应用程序的指标。 通过使用 RabbitMQ 作为集中式消息代理,组织可以统一其监控数据,从而通过 Telegraf 进行全面的分析和仪表板显示,从而在异构环境中保持可见性。

  4. 实时日志处理:扩展 AMQP Consumer 的使用范围,以捕获发送到 RabbitMQ 交换机的日志数据,实时处理日志以进行监控和告警。 此应用程序确保通过分析日志模式、趋势和异常情况来快速检测和解决操作问题。

IoTDB

  1. 实时物联网监控:利用 IoTDB 插件来收集来自各种物联网设备的传感器数据,并将其保存在 Apache IoTDB 后端,从而促进对环境条件(如温度和湿度)的实时监控。 此用例使组织能够分析随时间变化的趋势,并根据历史数据做出明智的决策,同时还利用 IoTDB 的高效存储和查询功能。

  2. 智能农业数据收集:使用 IoTDB 插件来收集来自部署在田地中的智能农业传感器的指标。 通过将湿度水平、养分含量和大气条件传输到 IoTDB,农民可以访问有关最佳种植和浇水计划的详细见解,从而提高作物产量和资源管理。

  3. 能耗分析:利用 IoTDB 插件来跟踪来自整个公用事业网络智能电表的能耗指标。 这种集成使分析能够识别使用高峰并预测未来的消费模式,最终支持节能措施和改进的公用事业管理。

  4. 自动化工业设备监控:使用此插件来收集来自制造工厂中机器的操作指标,并将其存储在 IoTDB 中以进行分析。 这种设置可以帮助识别效率低下、预测性维护需求和操作异常,从而确保最佳性能并最大限度地减少意外停机时间。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都更有价值。 借助 InfluxDB,排名第一的、旨在与 Telegraf 协同扩展的时序平台。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供使用 DynamoDB 进行检查点处理的功能,以实现可靠的消息处理。

查看集成