AMQP 和 Elasticsearch 集成

通过易于集成的强大性能,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了实现查询和压缩优化、高速摄取和高可用性,您可能需要考虑 AMQP 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB-Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

AMQP Consumer 输入插件允许您从符合 AMQP 0-9-1 标准的消息代理(如 RabbitMQ)中摄取数据,从而为监控和分析目的实现无缝数据收集。

Telegraf Elasticsearch 插件无缝地将指标发送到 Elasticsearch 服务器。该插件处理模板创建和动态索引管理,并支持各种 Elasticsearch 特有功能,以确保数据格式正确,以便存储和检索。

集成详情

AMQP

此插件为 AMQP 0-9-1 提供了一个消费者,RabbitMQ 是其一个突出的实现。AMQP,或高级消息队列协议,最初是为了实现网络中不同系统之间可靠、可互操作的消息传递而开发的。该插件使用配置的队列和绑定键从主题交换中读取指标,从而提供了一种灵活高效的方式,用于从符合 AMQP 标准的消息传递系统中收集数据。这使用户能够利用现有的 RabbitMQ 实现来有效地监控其应用程序,方法是捕获详细的指标以进行分析和告警。

Elasticsearch

此插件将指标写入 Elasticsearch,Elasticsearch 是一种分布式 RESTful 搜索和分析引擎,能够近乎实时地存储大量数据。它旨在处理 Elasticsearch 5.x 到 7.x 版本,并利用其动态模板功能来正确管理数据类型映射。该插件支持高级功能,如模板管理、动态索引命名以及与 OpenSearch 的集成。它还允许配置 Elasticsearch 节点的身份验证和健康状况监控。

配置

AMQP

[[inputs.amqp_consumer]]
  ## Brokers to consume from.  If multiple brokers are specified a random broker
  ## will be selected anytime a connection is established.  This can be
  ## helpful for load balancing when not using a dedicated load balancer.
  brokers = ["amqp://localhost:5672/influxdb"]

  ## Authentication credentials for the PLAIN auth_method.
  # username = ""
  # password = ""

  ## Name of the exchange to declare.  If unset, no exchange will be declared.
  exchange = "telegraf"

  ## Exchange type; common types are "direct", "fanout", "topic", "header", "x-consistent-hash".
  # exchange_type = "topic"

  ## If true, exchange will be passively declared.
  # exchange_passive = false

  ## Exchange durability can be either "transient" or "durable".
  # exchange_durability = "durable"

  ## Additional exchange arguments.
  # exchange_arguments = { }
  # exchange_arguments = {"hash_property" = "timestamp"}

  ## AMQP queue name.
  queue = "telegraf"

  ## AMQP queue durability can be "transient" or "durable".
  queue_durability = "durable"

  ## If true, queue will be passively declared.
  # queue_passive = false

  ## Additional arguments when consuming from Queue
  # queue_consume_arguments = { }
  # queue_consume_arguments = {"x-stream-offset" = "first"}

  ## A binding between the exchange and queue using this binding key is
  ## created.  If unset, no binding is created.
  binding_key = "#"

  ## Maximum number of messages server should give to the worker.
  # prefetch_count = 50

  ## Max undelivered messages
  ## This plugin uses tracking metrics, which ensure messages are read to
  ## outputs before acknowledging them to the original broker to ensure data
  ## is not lost. This option sets the maximum messages to read from the
  ## broker that have not been written by an output.
  ##
  ## This value needs to be picked with awareness of the agent's
  ## metric_batch_size value as well. Setting max undelivered messages too high
  ## can result in a constant stream of data batches to the output. While
  ## setting it too low may never flush the broker's messages.
  # max_undelivered_messages = 1000

  ## Timeout for establishing the connection to a broker
  # timeout = "30s"

  ## Auth method. PLAIN and EXTERNAL are supported
  ## Using EXTERNAL requires enabling the rabbitmq_auth_mechanism_ssl plugin as
  ## described here: https://rabbitmq.cn/plugins.html
  # auth_method = "PLAIN"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Content encoding for message payloads, can be set to
  ## "gzip", "identity" or "auto"
  ## - Use "gzip" to decode gzip
  ## - Use "identity" to apply no encoding
  ## - Use "auto" determine the encoding using the ContentEncoding header
  # content_encoding = "identity"

  ## Maximum size of decoded message.
  ## Acceptable units are B, KiB, KB, MiB, MB...
  ## Without quotes and units, interpreted as size in bytes.
  # max_decompression_size = "500MB"

  ## Data format to consume.
  ## Each data format has its own unique set of configuration options, read
  ## more about them here:
  ## https://github.com/influxdata/telegraf/blob/master/docs/DATA_FORMATS_INPUT.md
  data_format = "influx"

Elasticsearch


[[outputs.elasticsearch]]
  ## The full HTTP endpoint URL for your Elasticsearch instance
  ## Multiple urls can be specified as part of the same cluster,
  ## this means that only ONE of the urls will be written to each interval
  urls = [ "http://node1.es.example.com:9200" ] # required.
  ## Elasticsearch client timeout, defaults to "5s" if not set.
  timeout = "5s"
  ## Set to true to ask Elasticsearch a list of all cluster nodes,
  ## thus it is not necessary to list all nodes in the urls config option
  enable_sniffer = false
  ## Set to true to enable gzip compression
  enable_gzip = false
  ## Set the interval to check if the Elasticsearch nodes are available
  ## Setting to "0s" will disable the health check (not recommended in production)
  health_check_interval = "10s"
  ## Set the timeout for periodic health checks.
  # health_check_timeout = "1s"
  ## HTTP basic authentication details.
  ## HTTP basic authentication details
  # username = "telegraf"
  # password = "mypassword"
  ## HTTP bearer token authentication details
  # auth_bearer_token = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9"

  ## Index Config
  ## The target index for metrics (Elasticsearch will create if it not exists).
  ## You can use the date specifiers below to create indexes per time frame.
  ## The metric timestamp will be used to decide the destination index name
  # %Y - year (2016)
  # %y - last two digits of year (00..99)
  # %m - month (01..12)
  # %d - day of month (e.g., 01)
  # %H - hour (00..23)
  # %V - week of the year (ISO week) (01..53)
  ## Additionally, you can specify a tag name using the notation {{tag_name}}
  ## which will be used as part of the index name. If the tag does not exist,
  ## the default tag value will be used.
  # index_name = "telegraf-{{host}}-%Y.%m.%d"
  # default_tag_value = "none"
  index_name = "telegraf-%Y.%m.%d" # required.

  ## Optional Index Config
  ## Set to true if Telegraf should use the "create" OpType while indexing
  # use_optype_create = false

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

  ## Template Config
  ## Set to true if you want telegraf to manage its index template.
  ## If enabled it will create a recommended index template for telegraf indexes
  manage_template = true
  ## The template name used for telegraf indexes
  template_name = "telegraf"
  ## Set to true if you want telegraf to overwrite an existing template
  overwrite_template = false
  ## If set to true a unique ID hash will be sent as sha256(concat(timestamp,measurement,series-hash)) string
  ## it will enable data resend and update metric points avoiding duplicated metrics with different id's
  force_document_id = false

  ## Specifies the handling of NaN and Inf values.
  ## This option can have the following values:
  ##    none    -- do not modify field-values (default); will produce an error if NaNs or infs are encountered
  ##    drop    -- drop fields containing NaNs or infs
  ##    replace -- replace with the value in "float_replacement_value" (default: 0.0)
  ##               NaNs and inf will be replaced with the given number, -inf with the negative of that number
  # float_handling = "none"
  # float_replacement_value = 0.0

  ## Pipeline Config
  ## To use a ingest pipeline, set this to the name of the pipeline you want to use.
  # use_pipeline = "my_pipeline"
  ## Additionally, you can specify a tag name using the notation {{tag_name}}
  ## which will be used as part of the pipeline name. If the tag does not exist,
  ## the default pipeline will be used as the pipeline. If no default pipeline is set,
  ## no pipeline is used for the metric.
  # use_pipeline = "{{es_pipeline}}"
  # default_pipeline = "my_pipeline"
  #
  # Custom HTTP headers
  # To pass custom HTTP headers please define it in a given below section
  # [outputs.elasticsearch.headers]
  #    "X-Custom-Header" = "custom-value"

  ## Template Index Settings
  ## Overrides the template settings.index section with any provided options.
  ## Defaults provided here in the config
  # template_index_settings = {
  #   refresh_interval = "10s",
  #   mapping.total_fields.limit = 5000,
  #   auto_expand_replicas = "0-1",
  #   codec = "best_compression"
  # }

输入和输出集成示例

AMQP

  1. 集成应用程序指标与 AMQP:使用 AMQP Consumer 插件收集发布到 RabbitMQ 交换机的应用程序指标。通过配置插件以侦听特定队列,团队可以深入了解应用程序性能,跟踪请求速率、错误计数和延迟指标,所有这些都是实时的。这种设置不仅有助于异常检测,还为容量规划和系统优化提供有价值的数据。

  2. 事件驱动型监控:配置 AMQP Consumer 以在应用程序内满足某些条件时触发特定的监控事件。例如,如果收到指示高错误率的消息,该插件可以将此数据馈送到监控工具中,从而生成警报或扩展事件。这种集成可以提高对问题的响应速度,并自动化部分运营工作流程。

  3. 跨平台数据聚合:利用 AMQP Consumer 插件整合来自分布在不同平台上的各种应用程序的指标。通过使用 RabbitMQ 作为中心化消息代理,组织可以统一其监控数据,从而允许通过 Telegraf 进行全面的分析和仪表板展示,从而保持跨异构环境的可见性。

  4. 实时日志处理:扩展 AMQP Consumer 的用途,以捕获发送到 RabbitMQ 交换机的日志数据,实时处理日志以进行监控和告警目的。此应用确保通过分析日志模式、趋势和异常(在发生时)来快速检测和解决运营问题。

Elasticsearch

  1. 基于时间的索引:使用此插件将指标存储在 Elasticsearch 中,以基于收集时间为每个指标编制索引。例如,CPU 指标可以存储在名为 telegraf-2023.01.01 的每日索引中,从而实现简单的基于时间的查询和保留策略。

  2. 动态模板管理:利用模板管理功能自动创建针对您的指标量身定制的自定义模板。这允许您定义如何索引和分析不同的字段,而无需手动配置 Elasticsearch,从而确保用于查询的最佳数据结构。

  3. OpenSearch 兼容性:如果您正在使用 AWS OpenSearch,您可以通过激活兼容模式来配置此插件以无缝工作,从而确保您现有的 Elasticsearch 客户端保持功能性并与较新的集群设置兼容。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现任何错误,我们欢迎并鼓励您提供意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成