ActiveMQ 和 SQLite 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了进行查询和压缩优化、高速摄取和高可用性,您可能需要考虑 ActiveMQ 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

ActiveMQ 输入插件通过其控制台 API 从 ActiveMQ 消息代理收集指标,从而深入了解消息队列、主题和订阅者的性能和状态。

Telegraf 的 SQL 输出插件通过为每种指标类型动态创建表,将指标存储在 SQL 数据库中。当配置为 SQLite 时,它使用基于文件的 DSN 和为轻量级嵌入式数据库使用量身定制的最小 SQL 模式。

集成详情

ActiveMQ

ActiveMQ 输入插件与 ActiveMQ 控制台 API 交互,以收集与队列、主题和订阅者相关的指标。ActiveMQ 是一种广泛使用的开源消息代理,支持各种消息传递协议,并提供强大的 Web 控制台用于管理和监控。该插件允许用户跟踪关键指标,包括队列大小、消费者计数和不同 ActiveMQ 实体中的消息计数,从而增强消息传递系统中的可观察性。用户可以配置各种参数,例如 Web 控制台 URL 和基本身份验证凭据,以使插件适应其环境。收集的指标可用于监控消息传递应用程序的运行状况和性能,从而促进主动管理和故障排除。

SQLite

SQL 输出插件使用动态模式将 Telegraf 指标写入 SQL 数据库,其中每种指标类型对应一个表。对于 SQLite,该插件使用 modernc.org/sqlite 驱动程序,并且需要文件 URI 格式的 DSN(例如,“file:/path/to/telegraf.db?cache=shared”)。此配置利用标准 ANSI SQL 进行表创建和数据插入,确保与 SQLite 的功能兼容。

配置

ActiveMQ

[[inputs.activemq]]
  ## ActiveMQ WebConsole URL
  url = "http://127.0.0.1:8161"

  ## Required ActiveMQ Endpoint
  ##   deprecated in 1.11; use the url option
  # server = "192.168.50.10"
  # port = 8161

  ## Credentials for basic HTTP authentication
  # username = "admin"
  # password = "admin"

  ## Required ActiveMQ webadmin root path
  # webadmin = "admin"

  ## Maximum time to receive response.
  # response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

SQLite

[[outputs.sql]]
  ## Database driver
  ## Valid options: mssql (Microsoft SQL Server), mysql (MySQL), pgx (Postgres),
  ## sqlite (SQLite3), snowflake (snowflake.com), clickhouse (ClickHouse)
  driver = "sqlite"

  ## Data source name
  ## For SQLite, the DSN is a filename or URL with the scheme "file:".
  ## Example: "file:/path/to/telegraf.db?cache=shared"
  data_source_name = "file:/path/to/telegraf.db?cache=shared"

  ## Timestamp column name
  timestamp_column = "timestamp"

  ## Table creation template
  ## Available template variables:
  ##  {TABLE}        - table name as a quoted identifier
  ##  {TABLELITERAL} - table name as a quoted string literal
  ##  {COLUMNS}      - column definitions (list of quoted identifiers and types)
  table_template = "CREATE TABLE {TABLE} ({COLUMNS})"

  ## Table existence check template
  ## Available template variables:
  ##  {TABLE} - table name as a quoted identifier
  table_exists_template = "SELECT 1 FROM {TABLE} LIMIT 1"

  ## Initialization SQL (optional)
  init_sql = ""

  ## Maximum amount of time a connection may be idle. "0s" means connections are never closed due to idle time.
  connection_max_idle_time = "0s"

  ## Maximum amount of time a connection may be reused. "0s" means connections are never closed due to age.
  connection_max_lifetime = "0s"

  ## Maximum number of connections in the idle connection pool. 0 means unlimited.
  connection_max_idle = 2

  ## Maximum number of open connections to the database. 0 means unlimited.
  connection_max_open = 0

  ## Metric type to SQL type conversion
  ## The values on the left are the data types Telegraf has and the values on the right are the SQL types used when writing to SQLite.
  #[outputs.sql.convert]
  #  integer       = "INT"
  #  real          = "DOUBLE"
  #  text          = "TEXT"
  #  timestamp     = "TIMESTAMP"
  #  defaultvalue  = "TEXT"
  #  unsigned      = "UNSIGNED"
  #  bool          = "BOOL"

输入和输出集成示例

ActiveMQ

  1. 主动队列监控:对于高容量交易应用程序,使用 ActiveMQ 插件实时监控队列大小。此实现允许团队在队列大小超过特定阈值时接收警报,从而能够快速响应由积压造成的潜在停机时间,从而确保交易操作的持续可用性。

  2. 性能基线和异常检测:将此插件与机器学习框架集成,以建立消息吞吐量的性能基线。通过分析通过此插件收集的历史数据,团队可以标记处理速率的异常情况,从而更快地识别影响服务可靠性和性能的问题。

  3. 跨消息传递系统分析:在集中式仪表板中结合来自 ActiveMQ 的指标和其他消息传递系统的指标。用户可以可视化和比较性能数据(例如入队和出队速率),从而深入了解整个消息传递架构,并帮助优化不同代理之间的消息流。

  4. 订阅者性能洞察:利用此插件收集的订阅者指标来分析行为模式并优化消费者应用程序的配置。了解已分派的队列大小和计数器值等指标可以指导调整,以提高处理效率和资源分配。

SQLite

  1. 本地监控存储:配置插件以将指标写入本地 SQLite 数据库文件。这非常适合不需要设置全规模数据库服务器的轻量级部署。
  2. 嵌入式应用程序:将 SQLite 用作边缘设备中嵌入式应用程序的后端,受益于其基于文件的架构和最低资源需求。
  3. 快速设置以进行测试:利用 SQLite 的易用性,快速设置 Telegraf 指标收集的测试环境,而无需外部数据库服务。
  4. 自定义模式管理:如果您需要特定的列类型或索引,请调整表创建模板以预定义您的模式,从而确保与您的应用程序的需求兼容。

反馈

感谢您成为我们社区的一份子!如果您对这些页面有任何一般性反馈或发现任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它都会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成