目录
输入和输出集成概述
ActiveMQ 输入插件通过其控制台 API 从 ActiveMQ 消息代理收集指标,从而深入了解消息队列、主题和订阅者的性能和状态。
Telegraf PostgreSQL 插件允许您高效地将指标写入 PostgreSQL 数据库,同时自动管理数据库模式。
集成详情
ActiveMQ
ActiveMQ 输入插件与 ActiveMQ 控制台 API 接口,以收集与队列、主题和订阅者相关的指标。ActiveMQ 是一款广泛使用的开源消息代理,支持各种消息协议,并提供强大的 Web 控制台用于管理和监控。此插件允许用户跟踪关键指标,包括队列大小、消费者计数和不同 ActiveMQ 实体中的消息计数,从而增强消息传递系统内的可观察性。用户可以配置各种参数,例如 Web 控制台 URL 和基本身份验证凭据,以根据其环境定制插件。收集的指标可用于监控消息传递应用程序的运行状况和性能,从而促进主动管理和故障排除。
PostgreSQL
PostgreSQL 插件使用户能够将指标写入 PostgreSQL 数据库或兼容数据库,通过自动更新缺失的列,为模式管理提供强大的支持。该插件旨在促进与监控解决方案的集成,允许用户高效地存储和管理时序数据。它为连接设置、并发和错误处理提供可配置的选项,并支持高级功能,例如用于标签和字段的 JSONB 存储、外键标记、模板化模式修改以及通过 pguint 扩展支持无符号整数数据类型。
配置
ActiveMQ
[[inputs.activemq]]
## ActiveMQ WebConsole URL
url = "http://127.0.0.1:8161"
## Required ActiveMQ Endpoint
## deprecated in 1.11; use the url option
# server = "192.168.50.10"
# port = 8161
## Credentials for basic HTTP authentication
# username = "admin"
# password = "admin"
## Required ActiveMQ webadmin root path
# webadmin = "admin"
## Maximum time to receive response.
# response_timeout = "5s"
## Optional TLS Config
# tls_ca = "/etc/telegraf/ca.pem"
# tls_cert = "/etc/telegraf/cert.pem"
# tls_key = "/etc/telegraf/key.pem"
## Use TLS but skip chain & host verification
# insecure_skip_verify = false
PostgreSQL
# Publishes metrics to a postgresql database
[[outputs.postgresql]]
## Specify connection address via the standard libpq connection string:
## host=... user=... password=... sslmode=... dbname=...
## Or a URL:
## postgres://[user[:password]]@localhost[/dbname]?sslmode=[disable|verify-ca|verify-full]
## See https://postgresql.ac.cn/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
##
## All connection parameters are optional. Environment vars are also supported.
## e.g. PGPASSWORD, PGHOST, PGUSER, PGDATABASE
## All supported vars can be found here:
## https://postgresql.ac.cn/docs/current/libpq-envars.html
##
## Non-standard parameters:
## pool_max_conns (default: 1) - Maximum size of connection pool for parallel (per-batch per-table) inserts.
## pool_min_conns (default: 0) - Minimum size of connection pool.
## pool_max_conn_lifetime (default: 0s) - Maximum age of a connection before closing.
## pool_max_conn_idle_time (default: 0s) - Maximum idle time of a connection before closing.
## pool_health_check_period (default: 0s) - Duration between health checks on idle connections.
# connection = ""
## Postgres schema to use.
# schema = "public"
## Store tags as foreign keys in the metrics table. Default is false.
# tags_as_foreign_keys = false
## Suffix to append to table name (measurement name) for the foreign tag table.
# tag_table_suffix = "_tag"
## Deny inserting metrics if the foreign tag can't be inserted.
# foreign_tag_constraint = false
## Store all tags as a JSONB object in a single 'tags' column.
# tags_as_jsonb = false
## Store all fields as a JSONB object in a single 'fields' column.
# fields_as_jsonb = false
## Name of the timestamp column
## NOTE: Some tools (e.g. Grafana) require the default name so be careful!
# timestamp_column_name = "time"
## Type of the timestamp column
## Currently, "timestamp without time zone" and "timestamp with time zone"
## are supported
# timestamp_column_type = "timestamp without time zone"
## Templated statements to execute when creating a new table.
# create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }})''',
# ]
## Templated statements to execute when adding columns to a table.
## Set to an empty list to disable. Points containing tags for which there is no column will be skipped. Points
## containing fields for which there is no column will have the field omitted.
# add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## Templated statements to execute when creating a new tag table.
# tag_table_create_templates = [
# '''CREATE TABLE {{ .table }} ({{ .columns }}, PRIMARY KEY (tag_id))''',
# ]
## Templated statements to execute when adding columns to a tag table.
## Set to an empty list to disable. Points containing tags for which there is no column will be skipped.
# tag_table_add_column_templates = [
# '''ALTER TABLE {{ .table }} ADD COLUMN IF NOT EXISTS {{ .columns|join ", ADD COLUMN IF NOT EXISTS " }}''',
# ]
## The postgres data type to use for storing unsigned 64-bit integer values (Postgres does not have a native
## unsigned 64-bit integer type).
## The value can be one of:
## numeric - Uses the PostgreSQL "numeric" data type.
## uint8 - Requires pguint extension (https://github.com/petere/pguint)
# uint64_type = "numeric"
## When using pool_max_conns>1, and a temporary error occurs, the query is retried with an incremental backoff. This
## controls the maximum backoff duration.
# retry_max_backoff = "15s"
## Approximate number of tag IDs to store in in-memory cache (when using tags_as_foreign_keys).
## This is an optimization to skip inserting known tag IDs.
## Each entry consumes approximately 34 bytes of memory.
# tag_cache_size = 100000
## Enable & set the log level for the Postgres driver.
# log_level = "warn" # trace, debug, info, warn, error, none
输入和输出集成示例
ActiveMQ
-
主动队列监控:使用 ActiveMQ 插件实时监控高容量交易应用程序的队列大小。此实现允许团队在队列大小超过特定阈值时接收警报,从而能够快速响应积压可能导致的潜在停机时间,从而确保交易操作的持续可用性。
-
性能基线和异常检测:将此插件与机器学习框架集成,以建立消息吞吐量的性能基线。通过分析通过此插件收集的历史数据,团队可以标记处理速率中的异常,从而更快地识别影响服务可靠性和性能的问题。
-
跨消息系统分析:将来自 ActiveMQ 的指标与来自集中式仪表板中其他消息传递系统的指标相结合。用户可以可视化和比较性能数据,例如入队和出队速率,从而深入了解整体消息传递架构,并帮助优化不同代理之间的消息流。
-
订阅者性能洞察:利用此插件收集的订阅者指标来分析行为模式并优化消费者应用程序的配置。了解诸如已调度队列大小和计数器值之类的指标可以指导调整,以提高处理效率和资源分配。
PostgreSQL
-
使用复杂查询进行实时分析:利用 PostgreSQL 插件将来自各种来源的指标存储在 PostgreSQL 数据库中,从而可以使用复杂查询进行实时分析。这种设置可以帮助数据科学家和分析师发现模式和趋势,因为他们在利用 PostgreSQL 强大的查询优化功能的同时,跨多个表操作关系数据。具体来说,用户可以使用跨不同指标表的 JOIN 操作创建复杂的报告,从而揭示通常在嵌入式系统中隐藏的洞察。
-
与 TimescaleDB 集成以进行时序数据处理:在 TimescaleDB 实例中使用 PostgreSQL 插件来高效处理和分析时序数据。通过实施超表,用户可以在时间维度上实现更高性能的主题分区。这种集成允许用户对大量时序数据运行分析查询,同时保留 PostgreSQL SQL 查询的全部功能,从而确保指标分析的可靠性和效率。
-
数据版本控制和历史分析:实施一种使用 PostgreSQL 插件的策略,以维护指标在不同时间段的不同版本。用户可以设置不可变的数据表结构,其中保留旧版本的表,从而实现轻松的历史分析。这种方法不仅提供了对数据演变的洞察,而且有助于遵守数据保留策略,确保数据集的历史完整性保持不变。
-
用于演变指标的动态模式管理:使用插件的模板功能来创建动态变化的模式,以响应指标变化。此用例允许组织随着指标的发展而调整其数据结构,添加必要的字段并确保遵守数据完整性策略。通过利用模板化的 SQL 命令,用户无需手动干预即可扩展其数据库,从而促进敏捷数据管理实践。
反馈
感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。