ActiveMQ 和 Google BigQuery 集成

强大的性能与简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。为了获得查询和压缩优化、高速摄取和高可用性,您可能需要考虑 ActiveMQ 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

ActiveMQ 输入插件通过其控制台 API 从 ActiveMQ 消息代理收集指标,从而深入了解消息队列、主题和订阅者的性能和状态。

Google BigQuery 插件允许 Telegraf 将指标写入 Google Cloud BigQuery,从而为遥测数据实现强大的数据分析功能。

集成详情

ActiveMQ

ActiveMQ 输入插件与 ActiveMQ 控制台 API 接口,以收集与队列、主题和订阅者相关的指标。ActiveMQ 是一种广泛使用的开源消息代理,支持各种消息传递协议,并提供强大的 Web 控制台用于管理和监控。此插件允许用户跟踪关键指标,包括队列大小、消费者计数和不同 ActiveMQ 实体上的消息计数,从而增强消息传递系统内的可观察性。用户可以配置各种参数,例如 WebConsole URL 和基本身份验证凭据,以根据其环境定制插件。收集的指标可用于监控消息传递应用程序的健康状况和性能,从而促进主动管理和故障排除。

Google BigQuery

Telegraf 的 Google BigQuery 插件实现了与 Google Cloud 的 BigQuery 服务的无缝集成,BigQuery 服务是一个流行的数据仓库和分析平台。此插件有助于将 Telegraf 收集的指标传输到 BigQuery 数据集中,从而使用户可以更轻松地从其遥测数据执行分析并生成见解。它需要通过服务帐户或用户凭据进行身份验证,并且旨在处理各种数据类型,确保用户在指标存储在 BigQuery 表中时可以保持指标的完整性和准确性。配置选项允许围绕数据集规范和处理指标进行自定义,包括管理指标名称中的连字符,BigQuery 的流式插入不支持连字符。对于利用 BigQuery 的可扩展性和强大的查询功能来分析大量监控数据的组织,此插件特别有用。

配置

ActiveMQ

[[inputs.activemq]]
  ## ActiveMQ WebConsole URL
  url = "http://127.0.0.1:8161"

  ## Required ActiveMQ Endpoint
  ##   deprecated in 1.11; use the url option
  # server = "192.168.50.10"
  # port = 8161

  ## Credentials for basic HTTP authentication
  # username = "admin"
  # password = "admin"

  ## Required ActiveMQ webadmin root path
  # webadmin = "admin"

  ## Maximum time to receive response.
  # response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Google BigQuery

# Configuration for Google Cloud BigQuery to send entries
[[outputs.bigquery]]
  ## Credentials File
  credentials_file = "/path/to/service/account/key.json"

  ## Google Cloud Platform Project
  # project = ""

  ## The namespace for the metric descriptor
  dataset = "telegraf"

  ## Timeout for BigQuery operations.
  # timeout = "5s"

  ## Character to replace hyphens on Metric name
  # replace_hyphen_to = "_"

  ## Write all metrics in a single compact table
  # compact_table = ""
  

输入和输出集成示例

ActiveMQ

  1. 主动队列监控:使用 ActiveMQ 插件实时监控高容量交易应用程序中的队列大小。此实现允许团队在队列大小超过特定阈值时接收警报,从而对积压造成的潜在停机时间做出快速响应,从而确保交易操作的持续可用性。

  2. 性能基线和异常检测:将此插件与机器学习框架集成,以建立消息吞吐量的性能基线。通过分析通过此插件收集的历史数据,团队可以标记处理速率的异常,从而更快地识别影响服务可靠性和性能的问题。

  3. 跨消息传递系统分析:在集中式仪表板中组合来自 ActiveMQ 的指标和来自其他消息传递系统的指标。用户可以可视化和比较性能数据(例如入队和出队速率),从而深入了解整体消息传递架构并帮助优化不同代理之间的消息流。

  4. 订阅者性能洞察:利用此插件收集的订阅者指标来分析行为模式并优化消费者应用程序的配置。了解诸如已分派队列大小和计数器值之类的指标可以指导调整以提高处理效率和资源分配。

Google BigQuery

  1. 实时分析仪表板:利用 Google BigQuery 插件将实时指标馈送到 Google Cloud 上托管的自定义分析仪表板中。此设置将允许团队实时可视化性能数据,从而深入了解系统健康状况和使用模式。通过使用 BigQuery 的查询功能,用户可以轻松创建量身定制的报告和仪表板以满足其特定需求,从而增强决策过程。

  2. 成本管理和优化分析:利用插件自动将来自各种服务的成本相关指标发送到 BigQuery。分析此数据可以帮助企业识别不必要的费用并优化资源使用。通过在 BigQuery 中执行聚合和转换查询,组织可以创建准确的预测并有效地管理其云支出。

  3. 监控数据上的跨团队协作:使组织内不同的团队可以使用 BigQuery 共享其监控数据。借助此 Telegraf 插件,团队可以将其指标推送到中央 BigQuery 实例,从而促进协作。这种数据共享方法鼓励最佳实践和跨职能意识,从而共同提高系统性能和可靠性。

  4. 用于容量规划的历史分析:通过使用 BigQuery 插件,公司可以收集和存储对于容量规划至关重要的历史指标数据。分析随时间变化的趋势可以帮助预测系统需求并主动扩展基础设施。组织可以创建时间序列分析并识别模式,从而为他们的长期战略决策提供信息。

反馈

感谢您成为我们社区的一份子!如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。当您将任何数据视为时间序列数据时,它会更有价值。InfluxDB 是排名第一的时间序列平台,旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许基于这些消息创建指标。它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。它支持多种输入数据格式,并提供使用 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成