ActiveMQ 和 Azure Data Explorer 集成

强大的性能和简单的集成,由 InfluxData 构建的开源数据连接器 Telegraf 提供支持。

info

对于大规模实时查询,这不是推荐的配置。 为了获得查询和压缩优化、高速摄取和高可用性,您可能需要考虑ActiveMQ 和 InfluxDB

50 亿+

Telegraf 下载量

#1

时间序列数据库
来源:DB Engines

10 亿+

InfluxDB 下载量

2,800+

贡献者

目录

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都会更有价值。 借助 InfluxDB,这个排名第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

输入和输出集成概述

ActiveMQ 输入插件通过其控制台 API 从 ActiveMQ 消息代理收集指标,从而深入了解消息队列、主题和订阅者的性能和状态。

Azure Data Explorer 插件允许将指标收集与 Azure Data Explorer 集成,使用户能够高效地分析和查询其遥测数据。 通过此插件,用户可以配置摄取设置以满足其需求,并利用 Azure 强大的分析功能。

集成详情

ActiveMQ

ActiveMQ 输入插件与 ActiveMQ 控制台 API 接口,以收集与队列、主题和订阅者相关的指标。 ActiveMQ 是一种广泛使用的开源消息代理,支持各种消息传递协议,并提供强大的 Web 控制台用于管理和监控。 此插件允许用户跟踪关键指标,包括队列大小、消费者计数和不同 ActiveMQ 实体中的消息计数,从而增强消息传递系统内的可观察性。 用户可以配置各种参数,例如 WebConsole URL 和基本身份验证凭据,以根据其环境定制插件。 收集的指标可用于监控消息传递应用程序的运行状况和性能,从而促进主动管理和故障排除。

Azure Data Explorer

Azure Data Explorer 插件允许用户将从各种 Telegraf 输入插件收集的指标、日志和时间序列数据写入 Azure Data Explorer、Azure Synapse 和 Fabric 中的 Real-Time Analytics。 此集成充当桥梁,使应用程序和服务能够有效地监控其性能指标或日志。 Azure Data Explorer 针对对大量不同数据类型进行分析进行了优化,使其成为云环境中实时分析和监控解决方案的绝佳选择。 该插件使用户能够根据其需求配置指标摄取,动态定义表架构,并设置各种摄取方法,同时保留数据库操作所需的角色和权限方面的灵活性。 这支持利用云服务的现代应用程序的可扩展且安全的监控设置。

配置

ActiveMQ

[[inputs.activemq]]
  ## ActiveMQ WebConsole URL
  url = "http://127.0.0.1:8161"

  ## Required ActiveMQ Endpoint
  ##   deprecated in 1.11; use the url option
  # server = "192.168.50.10"
  # port = 8161

  ## Credentials for basic HTTP authentication
  # username = "admin"
  # password = "admin"

  ## Required ActiveMQ webadmin root path
  # webadmin = "admin"

  ## Maximum time to receive response.
  # response_timeout = "5s"

  ## Optional TLS Config
  # tls_ca = "/etc/telegraf/ca.pem"
  # tls_cert = "/etc/telegraf/cert.pem"
  # tls_key = "/etc/telegraf/key.pem"
  ## Use TLS but skip chain & host verification
  # insecure_skip_verify = false

Azure Data Explorer

[[outputs.azure_data_explorer]]
  ## The URI property of the Azure Data Explorer resource on Azure
  ## ex: endpoint_url = https://myadxresource.australiasoutheast.kusto.windows.net
  endpoint_url = ""

  ## The Azure Data Explorer database that the metrics will be ingested into.
  ## The plugin will NOT generate this database automatically, it's expected that this database already exists before ingestion.
  ## ex: "exampledatabase"
  database = ""

  ## Timeout for Azure Data Explorer operations
  # timeout = "20s"

  ## Type of metrics grouping used when pushing to Azure Data Explorer.
  ## Default is "TablePerMetric" for one table per different metric.
  ## For more information, please check the plugin README.
  # metrics_grouping_type = "TablePerMetric"

  ## Name of the single table to store all the metrics (Only needed if metrics_grouping_type is "SingleTable").
  # table_name = ""

  ## Creates tables and relevant mapping if set to true(default).
  ## Skips table and mapping creation if set to false, this is useful for running Telegraf with the lowest possible permissions i.e. table ingestor role.
  # create_tables = true

  ##  Ingestion method to use.
  ##  Available options are
  ##    - managed  --  streaming ingestion with fallback to batched ingestion or the "queued" method below
  ##    - queued   --  queue up metrics data and process sequentially
  # ingestion_type = "queued"

输入和输出集成示例

ActiveMQ

  1. 主动队列监控:使用 ActiveMQ 插件实时监控高容量交易应用程序的队列大小。 此实现允许团队在队列大小超过特定阈值时接收警报,从而能够快速响应由积压造成的潜在停机时间,从而确保交易操作的持续可用性。

  2. 性能基线和异常检测:将此插件与机器学习框架集成,以建立消息吞吐量的性能基线。 通过分析通过此插件收集的历史数据,团队可以标记处理速率中的异常,从而更快地识别影响服务可靠性和性能的问题。

  3. 跨消息传递系统分析:将来自 ActiveMQ 的指标与来自中央仪表板中其他消息传递系统的指标相结合。 用户可以可视化和比较性能数据,例如入队和出队速率,从而提供对整体消息传递架构的宝贵见解,并协助优化不同代理之间的消息流。

  4. 订阅者性能洞察:利用此插件收集的订阅者指标来分析行为模式并优化消费者应用程序的配置。 了解诸如调度的队列大小和计数器值之类的指标可以指导调整以提高处理效率和资源分配。

Azure Data Explorer

  1. 实时监控仪表板:通过使用此插件将来自各种服务的指标集成到 Azure Data Explorer 中,组织可以构建反映实时性能指标的综合仪表板。 这使团队能够主动响应性能问题并优化系统健康状况,而不会出现延迟。

  2. 集中式日志管理:利用 Azure Data Explorer 来整合来自多个应用程序和服务的日志。 通过利用该插件,组织可以简化其日志分析流程,从而更轻松地搜索、过滤和从随时间累积的历史数据中获取见解。

  3. 数据驱动的警报系统:通过根据通过此插件发送的指标配置警报来增强监控功能。 组织可以设置阈值并自动执行事件响应,从而显着减少停机时间并提高关键操作的可靠性。

  4. 机器学习模型训练:通过利用发送到 Azure Data Explorer 的数据,组织可以执行大规模分析并准备数据以馈送到机器学习模型中。 此插件支持构建可随后用于预测分析的数据结构,从而增强决策能力。

反馈

感谢您成为我们社区的一份子! 如果您有任何一般性反馈或在这些页面上发现了任何错误,我们欢迎并鼓励您提出意见。 请在 InfluxDB 社区 Slack 中提交您的反馈。

强大的性能,无限的扩展能力

收集、组织和处理海量高速数据。 当您将任何数据视为时间序列数据时,它都会更有价值。 借助 InfluxDB,这个排名第一的时间序列平台旨在与 Telegraf 一起扩展。

查看入门方法

相关集成

HTTP 和 InfluxDB 集成

HTTP 插件从一个或多个 HTTP(S) 端点收集指标。 它支持各种身份验证方法和数据格式的配置选项。

查看集成

Kafka 和 InfluxDB 集成

此插件从 Kafka 读取消息,并允许根据这些消息创建指标。 它支持各种配置,包括不同的 Kafka 设置和消息处理选项。

查看集成

Kinesis 和 InfluxDB 集成

Kinesis 插件允许从 AWS Kinesis 流中读取指标。 它支持多种输入数据格式,并提供带有 DynamoDB 的检查点功能,以实现可靠的消息处理。

查看集成