在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,为您的特定用例和数据模型决定哪个数据库具有最大的优势和最小的缺点是一项重要的决定。下面您将找到 AWS Redshift 和 VictoriaMetrics 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。

本文的主要目的是比较 AWS Redshift 和 VictoriaMetrics 在涉及时序数据的工作负载中的性能表现,而不是所有可能的用例。时序数据通常在数据库性能方面提出了独特的挑战。这是由于大量数据被写入以及访问该数据的查询模式。本文并非旨在说明哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。

AWS Redshift 与 VictoriaMetrics 细分


 
数据库模型

数据仓库

时序数据库

架构

AWS Redshift 利用列式存储格式进行快速查询,并支持标准 SQL。Redshift 使用分布式、共享无架构,其中数据跨多个计算节点进行分区。每个节点进一步划分为切片,每个切片并行处理数据子集。Redshift 可以部署在单节点或多节点集群中,后者为大型数据集提供更好的性能。

VictoriaMetrics 可以作为单节点实例部署用于小规模应用程序,或作为集群设置部署用于大规模应用程序,从而提供水平可扩展性和复制。

许可证

闭源

Apache 2.0

用例

商业分析、大规模数据处理、实时仪表板、数据集成、机器学习

监控、可观测性、物联网、实时分析、DevOps、应用程序性能监控

可扩展性

支持独立扩展存储和计算,并支持根据需要添加或删除节点

水平可扩展,支持集群和复制,以实现高可用性和高性能

正在寻找最有效的方式来开始使用?

无论您是在寻求节省成本、降低管理开销还是开源,InfluxDB 都能提供帮助。

AWS Redshift 概述

Amazon Redshift 是一种完全托管的、PB 级数据仓库云服务。它于 2012 年作为 AWS 产品套件的一部分推出。Redshift 专为分析工作负载而设计,并与各种数据加载和 ETL 工具以及商业智能和报告工具集成。它使用列式存储来优化存储成本并提高查询性能。

VictoriaMetrics 概述

VictoriaMetrics 是由 VictoriaMetrics 公司开发的开源时序数据库。该数据库旨在通过提供最先进的监控和可观测性解决方案,帮助个人和组织应对他们的大数据挑战。VictoriaMetrics 旨在成为一种快速、经济高效且可扩展的监控解决方案和时序数据库。


AWS Redshift 用于时序数据

AWS Redshift 可以用于时序数据工作负载,尽管 Redshift 针对更通用的数据仓库用例进行了优化。用户可以利用日期和时间函数来聚合、筛选和转换时序数据。Redshift 还提供“时序表”,允许根据固定的保留期将数据存储在表中。

VictoriaMetrics 用于时序数据

VictoriaMetrics 专为时序数据而设计,使其成为涉及时标数据存储和分析的应用程序的可靠选择。它提供高性能的存储和检索功能,能够高效处理大量的时序数据。


AWS Redshift 关键概念

  • 集群:Redshift 集群是一组节点,由一个领导节点和一个或多个计算节点组成。领导节点管理与客户端应用程序的通信,并协调计算节点之间的查询执行。
  • 计算节点:这些节点存储数据并并行执行查询。集群中计算节点的数量会影响其存储容量和查询性能。
  • 列式存储:Redshift 使用列式存储格式,该格式将数据存储在列而不是行中。这种格式提高了查询性能并减少了存储空间需求。
  • 节点切片:计算节点被划分为切片。每个切片都分配了节点内存和磁盘空间的均等部分,它在其中处理一部分加载的数据。

VictoriaMetrics 关键概念

  • 时序:VictoriaMetrics 以时序的形式存储数据,时序是由时间索引的数据点序列。
  • 指标:指标表示随时间跟踪的特定测量值或观察值。
  • 标签:标签是与时序关联的键值对,用于筛选和分组数据。
  • 字段:字段包含与时序关联的实际数据值。
  • 查询语言:VictoriaMetrics 支持其自己的查询语言,该语言允许用户根据特定条件检索和分析时序数据。


AWS Redshift 架构

Redshift 的架构基于分布式和共享无架构。集群由一个领导节点和一个或多个计算节点组成。领导节点负责协调查询执行,而计算节点存储数据并并行执行查询。数据以列式格式存储,这提高了查询性能并减少了存储空间需求。Redshift 使用大规模并行处理 (MPP) 在多个节点之间分发和执行查询,使其能够水平扩展并为大规模数据仓库工作负载提供高性能。

VictoriaMetrics 架构

VictoriaMetrics 有两种形式:单服务器 VictoriaMetrics 和 VictoriaMetrics 集群。单服务器 VictoriaMetrics 是一个易于使用和维护的一体化二进制文件。它可以很好地垂直扩展,并且可以处理每秒数百万个指标。另一方面,VictoriaMetrics 集群由允许构建水平可扩展集群的组件组成,从而在要求苛刻的环境中实现高可用性和可扩展性。VictoriaMetrics 的架构使用户可以选择最适合其需求的部署选项,并根据需要扩展其数据库基础设施。

免费时序数据库指南

获取对备选方案和选择关键要求的全面审查。

AWS Redshift 功能

可扩展性

Redshift 允许您通过添加或删除计算节点来向上或向下扩展集群,使您能够根据需要调整存储容量和查询性能。

性能

Redshift 的列式存储格式和 MPP 架构使其能够为大规模数据仓库工作负载提供高性能的查询执行。

安全性

Redshift 提供一系列安全功能,包括静态和传输中加密、使用 Amazon Virtual Private Cloud (VPC) 进行网络隔离,以及与 AWS Identity and Access Management (IAM) 集成以进行访问控制。

VictoriaMetrics 功能

高性能

VictoriaMetrics 针对时序数据的高性能存储和检索进行了优化。它可以高效地处理每秒数百万个指标,并为实时分析提供快速的查询执行。

可扩展性

VictoriaMetrics 的架构允许垂直和水平扩展,使用户能够随着数据量和需求的增长而扩展其监控和时序数据库基础设施。

成本效益

VictoriaMetrics 为管理时序数据提供了经济高效的解决方案。其高效的存储和查询功能有助于最大限度地降低运营成本,同时保持高性能。


AWS Redshift 用例

数据仓库

Redshift 专为大规模数据仓库工作负载而设计,为存储和分析结构化数据提供可扩展且高性能的解决方案。

商业智能和报告

Redshift 与各种 BI 和报告工具集成,使组织能够从其数据中获得洞察力并做出数据驱动的决策。

ETL 和数据集成

Redshift 支持数据加载和提取、转换和加载 (ETL) 流程,允许您集成来自各种来源的数据并为分析做好准备。

VictoriaMetrics 用例

监控和可观测性

VictoriaMetrics 广泛用于监控和可观测性目的,允许组织收集、存储和分析来自各种系统和应用程序的指标和性能数据。它提供必要的工具和功能来跟踪和可视化关键绩效指标、排除问题并深入了解系统行为。

物联网数据管理

VictoriaMetrics 适用于处理物联网设备生成的大量时序数据。它可以高效地存储和处理传感器数据,从而实现对物联网生态系统的实时监控和分析。VictoriaMetrics 允许跟踪和分析来自工厂、制造工厂、卫星和其他物联网设备的数据。

容量规划

VictoriaMetrics 支持对指标进行回顾性分析和预测,以用于容量规划目的。它允许组织分析历史数据、识别模式和趋势,并就资源分配和未来容量需求做出明智的决策。


AWS Redshift 定价模型

Amazon Redshift 提供两种定价模型:按需实例和预留实例。使用按需定价,您只需按小时支付您使用的容量,而无需长期承诺。预留实例提供选择预留一年或三年期限容量的选项,与按需定价相比,小时费率更低。除了这些定价模型外,您还可以选择不同的节点类型,这些节点类型提供不同数量的存储、内存和计算资源。

VictoriaMetrics 定价模型

VictoriaMetrics 是一个开源项目,这意味着它可以免费使用,并且不需要任何许可费。用户可以下载二进制版本、Docker 镜像或源代码来设置和部署 VictoriaMetrics,而不会产生任何直接成本。VictoriaMetrics 还为本地企业产品和托管 VictoriaMetrics 实例提供付费产品。