在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,为您的特定用例和数据模型确定哪个数据库的优势最大,缺点最少,是一个重要的决定。下面您将找到 MongoDB 和 AWS Redshift 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。

本文的主要目的是比较 MongoDB 和 AWS Redshift 在涉及 时序数据 的工作负载中的性能,而不是所有可能的用例。时序数据通常在数据库性能方面提出了独特的挑战。这是由于正在写入的大量数据以及访问该数据的查询模式。本文并非旨在说明哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。

MongoDB 与 AWS Redshift 细分


 
数据库模型

文档数据库

数据仓库

架构

MongoDB 使用灵活的、类似 JSON 的文档模型来存储数据,这允许动态模式更改而无需停机。它支持即席查询、索引和实时聚合。MongoDB 可以部署为独立服务器、高可用性的副本集配置或水平扩展的分片集群。它也可用作名为 MongoDB Atlas 的托管云服务,该服务提供额外的功能,如自动备份、监控和全球分发。

AWS Redshift 利用列式存储格式进行快速查询,并支持标准 SQL。Redshift 使用分布式、共享无架构,其中数据跨多个计算节点进行分区。每个节点进一步划分为切片,每个切片并行处理数据子集。Redshift 可以部署在单节点或多节点集群中,后者为大型数据集提供更好的性能。

许可证

社区版的 SSPL,其他版本的商业许可证

闭源

用例

内容管理系统、移动应用程序、实时分析、物联网数据管理、电子商务平台

业务分析、大规模数据处理、实时仪表板、数据集成、机器学习

可扩展性

水平可扩展,支持数据分片、复制和自动负载均衡

支持独立扩展存储和计算,并支持根据需要添加或删除节点

正在寻找最有效率的入门方式?

无论您是在寻求成本节约、更低的维护开销还是开源,InfluxDB 都能帮助您。

MongoDB 概述

MongoDB 是一个流行的开源 NoSQL 数据库,于 2009 年发布。MongoDB 旨在处理大量非结构化和半结构化数据,提供灵活的、无模式的数据模型、水平可扩展性和高性能。它的易用性、基于 JSON 的文档存储以及对各种编程语言的支持,使其在各个行业和应用中得到广泛采用。

AWS Redshift 概述

Amazon Redshift 是一种完全托管的、PB 级云数据仓库服务。它于 2012 年作为 AWS 产品套件的一部分发布。Redshift 专为分析工作负载而设计,并与各种数据加载和 ETL 工具以及商业智能和报告工具集成。它使用列式存储来优化存储成本并提高查询性能。


MongoDB 用于时序数据

虽然 MongoDB 是一种通用 NoSQL 数据库,但它可用于存储和处理时序数据。MongoDB 灵活的数据模型允许轻松适应时序数据不断变化的结构,例如添加新指标或修改现有指标。MongoDB 提供对生存时间 (TTL) 索引的内置支持,该索引会在指定时间段后自动过期旧数据,使其适用于管理具有有限存储容量的大量时序数据。MongoDB 最近还为时序用例添加了自定义列式存储引擎和时序集合,旨在提高数据压缩和查询性能方面相对于默认 MongoDB 存储引擎的性能。

AWS Redshift 用于时序数据

AWS Redshift 可用于时序数据工作负载,尽管 Redshift 针对更通用的数据仓库用例进行了优化。用户可以利用日期和时间函数来聚合、过滤和转换时序数据。Redshift 还提供“时序表”,允许根据固定的保留期将数据存储在表中。


MongoDB 关键概念

一些特定于 MongoDB 的关键术语和概念包括

  • 数据库:MongoDB 数据库是集合的容器,集合是相关文档的组。
  • 集合:MongoDB 中的集合类似于关系数据库中的表,用于保存一组文档。
  • 文档:MongoDB 中的文档是单个记录,以称为 BSON(二进制 JSON)的类似 JSON 的格式存储。集合中的文档可以具有不同的结构。
  • 字段:字段是文档中的键值对,类似于关系数据库中的属性或列。
  • 索引:MongoDB 中的索引是一种数据结构,可提高集合中特定字段的查询性能。

AWS Redshift 关键概念

  • 集群:Redshift 集群是一组节点,由一个领导节点和一个或多个计算节点组成。领导节点管理与客户端应用程序的通信,并协调计算节点之间的查询执行。
  • 计算节点:这些节点存储数据并并行执行查询。集群中计算节点的数量会影响其存储容量和查询性能。
  • 列式存储:Redshift 使用列式存储格式,该格式按列而不是行存储数据。这种格式提高了查询性能并减少了存储空间需求。
  • 节点切片:计算节点被划分为切片。每个切片都分配了节点内存和磁盘空间的相等部分,用于处理加载的数据的一部分。


MongoDB 架构

MongoDB 的架构以其灵活的、基于文档的数据模型为中心。作为 NoSQL 数据库,MongoDB 支持无模式结构,这允许存储和查询各种数据类型,例如嵌套数组和文档。MongoDB 可以部署为独立服务器、副本集或分片集群。副本集通过自动故障转移和数据冗余提供高可用性,而分片集群通过基于分片键在多台服务器之间分发数据来实现水平扩展和负载均衡。

AWS Redshift 架构

Redshift 的架构基于分布式和共享无架构。集群由一个领导节点和一个或多个计算节点组成。领导节点负责协调查询执行,而计算节点存储数据并并行执行查询。数据以列式格式存储,这提高了查询性能并减少了存储空间需求。Redshift 使用大规模并行处理 (MPP) 在多个节点之间分发和执行查询,使其能够水平扩展并为大规模数据仓库工作负载提供高性能。

免费时序数据库指南

获取对备选方案和选择数据库的关键要求的全面审查。

MongoDB 功能

灵活的数据模型

MongoDB 的无模式数据模型允许存储和查询各种数据类型,使其非常适合处理复杂和不断发展的数据结构。

高可用性

MongoDB 的副本集功能通过自动故障转移和数据冗余确保高可用性。

水平可扩展性

MongoDB 的分片集群架构支持水平扩展和负载均衡,使其能够处理大规模数据处理和查询。

AWS Redshift 功能

可扩展性

Redshift 允许您通过添加或删除计算节点来向上或向下扩展集群,从而使您能够根据需要调整存储容量和查询性能。

性能

Redshift 的列式存储格式和 MPP 架构使其能够为大规模数据仓库工作负载提供高性能查询执行。

安全性

Redshift 提供一系列安全功能,包括静态和传输中加密、使用 Amazon Virtual Private Cloud (VPC) 的网络隔离以及与 AWS Identity and Access Management (IAM) 的集成以进行访问控制。


MongoDB 用例

内容管理系统

MongoDB 灵活的数据模型使其成为内容管理系统的理想选择,内容管理系统通常需要存储和管理各种内容类型(如文章、图像和视频)的能力。MongoDB 的无模式特性允许轻松适应不断变化的内容结构和需求。

物联网数据存储和分析

MongoDB 对高数据量和水平可扩展性的支持使其适用于存储和处理物联网设备生成的数据,如传感器读数和设备日志。其高效索引和查询数据的能力允许对物联网设备进行实时分析和监控。

电子商务平台

MongoDB 的灵活性和性能特性使其成为电子商务平台的绝佳选择,在电子商务平台中,需要高效地存储和查询各种产品信息、客户数据和交易记录。灵活的数据模型使您可以轻松适应产品属性和客户偏好的变化,而高可用性和可扩展性功能可确保流畅且响应迅速的用户体验。

AWS Redshift 用例

数据仓库

Redshift 专为大规模数据仓库工作负载而设计,为存储和分析结构化数据提供可扩展且高性能的解决方案。

商业智能和报告

Redshift 与各种 BI 和报告工具集成,使组织能够从其数据中获得洞察力并做出数据驱动的决策。

ETL 和数据集成

Redshift 支持数据加载和提取、转换和加载 (ETL) 流程,使您可以集成来自各种来源的数据并为分析做好准备。


MongoDB 定价模型

MongoDB 提供各种定价选项,包括免费的开源社区版和商业企业版,其中包含高级功能、管理工具和支持。MongoDB Inc. 还提供完全托管的基于云的数据库即服务 MongoDB Atlas,采用按需付费定价模型,该模型基于存储、数据传输和计算资源。MongoDB Atlas 提供具有有限资源的免费层,供希望在不产生费用的情况下试用服务的用户使用。

AWS Redshift 定价模型

Amazon Redshift 提供两种定价模型:按需和预留实例。使用按需定价,您可以按小时为使用的容量付费,而无需长期承诺。预留实例提供选择预留一年或三年期限容量的选项,与按需定价相比,每小时费率更低。除了这些定价模型外,您还可以在提供不同存储量、内存和计算资源的不同节点类型之间进行选择。