在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,为您的特定用例和数据模型决定哪种数据库具有最多的优势和最少的缺点是一项重要的决定。下面您将找到 M3 和 Prometheus 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。
本文的主要目的是比较 M3 和 Prometheus 在涉及时间序列数据的工作负载中的性能,而不是所有可能的用例。时间序列数据通常在数据库性能方面提出独特的挑战。这是由于正在写入的大量数据以及访问该数据的查询模式。本文并非旨在说明哪种数据库更好;它只是提供每个数据库的概述,以便您可以做出明智的决定。
M3 与 Prometheus 细分
![]() |
![]() |
|
数据库模型 | 时间序列数据库 |
时间序列数据库 |
架构 | M3 堆栈可以部署在本地或云端,使用 Kubernetes 等容器化技术,或作为 AWS 或 GCP 等平台上的托管服务 |
Prometheus 使用基于拉取的模型,它以给定的间隔从配置的目标中抓取指标。它以自定义、高效的本地存储格式存储时间序列数据,并支持多维数据收集、查询和警报。它可以作为服务器上的单个二进制文件或 Kubernetes 等容器平台上部署。 |
许可证 | Apache 2.0 |
Apache 2.0 |
用例 | 监控、可观测性、物联网、实时分析、大规模指标处理 |
监控、警报、可观测性、系统指标、应用程序指标 |
可扩展性 | 水平可扩展,专为高可用性和大规模部署而设计 |
Prometheus 专为可靠性而设计,可以垂直扩展(具有增加资源的单个节点)或通过联邦(分层设置,其中 Prometheus 服务器从其他 Prometheus 服务器抓取指标)进行扩展 |
正在寻找最有效的入门方式?
无论您是在寻求成本节约、更低的管理开销还是开源,InfluxDB 都能为您提供帮助。
M3 概述
M3 是一个完全用 Go 编写的分布式时间序列数据库。它旨在收集大量监控时间序列数据,以水平可扩展的方式分发存储,并高效地利用硬件资源。M3 最初由 Uber 开发,作为 Prometheus 和 Graphite 的可扩展远程存储后端,后来开源以供更广泛的使用。
Prometheus 概述
Prometheus 是一个开源监控和警报工具包,最初于 2012 年在 SoundCloud 开发。此后,它已成为广泛采用的监控解决方案,并且是云原生计算基金会 (CNCF) 项目的一部分。Prometheus 专注于为容器化和基于微服务的环境提供实时洞察和警报。其主要用例是监控基础设施和应用程序,重点是可靠性和可扩展性。
M3 用于时间序列数据
M3 专为时间序列数据而设计。它是一个分布式且可扩展的时间序列数据库,针对处理大量高分辨率数据点进行了优化,使其成为存储、查询和分析时间序列数据的理想解决方案。
M3 的架构侧重于提供快速高效的查询功能以及高摄取率,这对于处理时间序列数据至关重要。其水平可扩展性和高可用性确保它可以处理大规模部署的需求,并在数据量增长时保持性能。
Prometheus 用于时间序列数据
Prometheus 专为时间序列数据而设计,因为其主要重点是基于基础设施和应用程序状态的监控和警报。它使用基于拉取的模型,其中 Prometheus 服务器以固定的间隔从目标系统抓取指标。此模型适用于监控动态环境,因为它允许自动发现和监控新实例。但是,Prometheus 并非旨在作为通用时间序列数据库,可能不是高基数或长期数据存储的最佳选择。
M3 关键概念
- 时间序列压缩:M3 具有压缩时间序列数据的能力,从而显着节省内存和磁盘空间。它使用两种压缩算法,M3TSZ 和 protobuf 编码,以实现高效的数据压缩。
- 分片:M3 使用分配给物理节点的虚拟分片。时间序列键哈希到一组固定的虚拟分片,使水平扩展和节点管理无缝衔接。
- 一致性级别:M3 为读取和写入操作以及集群连接操作提供可变的一致性级别。写入一致性级别包括 One(单个节点成功)、Majority(大多数节点成功)和 All(所有节点成功)。读取一致性级别为 One,对应于从单个节点读取
Prometheus 关键概念
- 指标:系统特定方面的数值表示,例如 CPU 使用率或内存消耗。
- 时间序列:指标的数据点集合,按时间戳索引。
- 标签:键值对,为指标提供元数据和上下文,从而实现更精细的查询和聚合。
- PromQL:Prometheus 使用其自己的查询语言 PromQL(Prometheus 查询语言)来查询时间序列数据和生成警报。
M3 架构
M3 设计为水平可扩展并处理高数据吞吐量。它使用文件集文件作为长期存储的主要单元,存储时间序列值的压缩流。这些文件在块时间窗口变为不可访问后刷新到磁盘。M3 具有提交日志,相当于其他数据库中的提交日志或预写日志,这确保了数据完整性。客户端对等流式传输负责从对等方获取块以进行引导。M3 还实施缓存策略,通过确定哪些刷新块保留在内存中来优化高效读取。
Prometheus 架构
Prometheus 是一个单服务器、独立的监控系统,它使用基于拉取的方法从目标系统收集指标。它以自定义、高度压缩的磁盘格式存储时间序列数据,针对快速查询和低资源使用率进行了优化。Prometheus 的架构是模块化和可扩展的,组件包括导出器、服务发现机制以及与其他监控系统的集成。作为一个非分布式系统,它缺乏内置的集群或水平可扩展性,但它支持联邦,允许多个 Prometheus 服务器共享和聚合数据。
免费时间序列数据库指南
获取对备选项的全面审查以及选择数据库的关键要求。
M3 功能
提交日志
M3 使用提交日志来确保数据完整性,为写入操作提供持久性。
对等流式传输
M3 的客户端对等流式传输从对等方获取数据块以进行引导,从而优化数据检索和分发。
缓存机制
M3 实施各种缓存策略以有效管理内存使用,将频繁访问的数据块保留在内存中以实现更快的读取。
Prometheus 功能
基于拉取的模型
Prometheus 通过主动抓取目标来收集指标,从而实现动态环境的自动发现和监控。
PromQL
强大的 Prometheus 查询语言允许对时间序列数据进行富有表现力和灵活的查询。
警报
Prometheus 支持基于用户定义的规则的警报,并与各种警报管理和通知系统集成。
M3 用例
监控和可观测性
M3 特别适用于大规模监控和可观测性任务,因为它可以存储和管理由基础设施、应用程序和微服务生成的大量时间序列数据。组织可以使用 M3 来分析、可视化和检测从各种来源收集的指标中的异常,使他们能够识别潜在问题并优化其系统。
物联网和传感器数据
M3 可用于存储和处理物联网设备和传感器生成的大量时间序列数据。通过处理来自数百万个设备和传感器的数据,M3 可以为组织提供有关其连接设备的性能、使用模式和潜在问题的宝贵见解。此信息可用于优化、预测性维护和提高物联网系统的整体效率。
金融数据分析
金融组织可以使用 M3 来存储和分析与股票、债券、商品和其他金融工具相关的时间序列数据。通过提供快速高效的查询功能,M3 可以帮助分析师和交易员根据历史趋势、当前市场状况和潜在的未来发展做出更明智的决策。
Prometheus 用例
基础设施监控
Prometheus 广泛用于监控容器化和基于微服务的 инфраструктура 的健康状况和性能,包括 Kubernetes 和 Docker 环境。
应用程序性能监控 (APM)
Prometheus 可以使用客户端库收集自定义应用程序指标,并实时监控应用程序性能。
警报和异常检测
Prometheus 使组织能够根据特定阈值或条件设置警报,帮助他们快速识别和响应潜在问题或异常。
M3 定价模型
M3 是一个开源数据库,可以免费使用,但您必须考虑管理基础设施和运行 M3 所用硬件的成本。Chronosphere 是 M3 的共同维护者,与 Uber 一起,还提供使用 M3 作为后端存储层的托管可观测性服务。
Prometheus 定价模型
Prometheus 是一个开源项目,使用它不收取许可费。但是,在部署自托管 Prometheus 服务器时,可能会产生硬件、托管和运营费用。此外,一些基于云的托管 Prometheus 服务(例如 Grafana Cloud 和 Weave Cloud)提供不同的定价模型,这些模型基于数据保留、查询速率和支持等因素。
免费开始使用 InfluxDB
InfluxDB Cloud 是开始存储和分析时间序列数据的最快方式。