在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,为您的特定用例和数据模型决定哪个数据库具有最大的优势和最小的缺点是一个重要的决定。下面您将找到 Kdb 和 Apache Pinot 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。
本文的主要目的是比较 Kdb 和 Apache Pinot 在涉及时序数据的工作负载中的性能,而不是所有可能的用例。时序数据通常在数据库性能方面提出了独特的挑战。这是由于大量数据被写入以及访问该数据的查询模式。本文并非旨在说明哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。
Kdb 与 Apache Pinot 对比细分
![]() |
![]() |
|
数据库模型 | 时序和列式数据库 |
列式数据库 |
架构 | Kdb 可以部署在本地、云端或作为混合解决方案。 |
Pinot 可以部署在本地、云端或使用托管服务 |
许可证 | 闭源 |
Apache 2.0 |
用例 | 高频交易、金融服务、市场数据分析、物联网、实时分析 |
实时分析、OLAP、用户行为分析、点击流分析、广告技术、日志分析 |
可扩展性 | 高度可扩展,支持多线程和多节点,适用于大规模数据处理 |
水平可扩展,支持分布式架构,实现高可用性和高性能 |
正在寻找最有效率的入门方式?
无论您是追求节省成本、降低管理开销还是开源,InfluxDB 都能帮到您。
Kdb 概览
kdb+ 是 Kx Systems 开发的高性能列式时序数据库。kdb+ 于 2003 年发布,旨在高效管理大量数据,主要关注金融数据,例如股票市场交易和报价。它基于 q 编程语言的原则构建,q 编程语言是 APL 和 K 的后代。该数据库以其速度、可扩展性以及处理实时和历史数据的能力而闻名。
Apache Pinot 概览
Apache Pinot 是一个实时分布式 OLAP 数据存储,旨在以低延迟响应复杂的分析查询。它最初在 LinkedIn 开发,后来于 2015 年开源。Pinot 非常适合处理大规模数据和实时分析,可对大型数据集上的复杂查询提供近乎即时的响应。它被包括 LinkedIn、Microsoft 和 Uber 在内的多家大型组织使用。
Kdb 用于时序数据
kdb+ 旨在存储时序数据,使其自然适合需要高速查询和分析大量数据的应用程序。其列式存储格式允许高效压缩和检索时序数据,而其 q 语言提供了强大而富有表现力的方式来操作和分析数据。kdb+ 在金融数据方面尤其强大,尽管它也可以用于其他类型的时序数据。
Apache Pinot 用于时序数据
Apache Pinot 是处理时序数据的可靠选择,这归功于其列式存储和实时摄取功能。Pinot 从 Apache Kafka 等流媒体摄取数据的能力确保了时序数据可以在生成时进行分析,此外还提供了批量摄取数据的选项。
Kdb 关键概念
- q 语言:一种高级、特定领域的编程语言,用于在 kdb+ 中查询和操作数据。它结合了类似 SQL 的语法和函数式编程风格。
- 列式存储:kdb+ 以列而不是行的形式存储数据,这可以更快地查询和分析时序数据。
- 表:kdb+ 以表的形式存储数据,表类似于关系表,但侧重于列式存储和时序数据。
- 分散表:一种表存储格式,其中每列都存储在单独的文件中,进一步提高了查询性能。
Apache Pinot 关键概念
- 段:段是 Pinot 中数据存储的基本单元。它是一种列式存储格式,包含表数据的子集。
- 表:Pinot 中的表是段的集合。
- 控制器:控制器管理元数据并协调数据摄取、查询执行和集群管理。
- Broker:Broker 负责接收查询,将其路由到相应的服务器,并将结果返回给客户端。
- 服务器:服务器存储段并处理这些段上的查询。
Kdb 架构
kdb+ 是一种列式时序数据库,它采用定制的数据模型,专为高效存储和查询时序数据而设计。它不使用传统的 SQL,而是依赖 q 语言进行查询和数据操作。kdb+ 的架构设计用于内存和磁盘存储,并能够跨多台机器水平扩展。kdb+ 的主要组件是数据库引擎、q 语言解释器和内置 Web 服务器。
Apache Pinot 架构
Pinot 是一种分布式列式数据存储,它使用混合数据模型,结合了 NoSQL 和 SQL 数据库的功能。其架构包含三个主要组件:控制器、Broker 和服务器。控制器管理元数据和集群操作,而 Broker 处理查询路由,服务器存储和处理数据。Pinot 的列式存储格式实现了高效的压缩和快速的查询处理。
免费时序数据库指南
获取关于备选方案和选择关键要求的全面评估。
Kdb 功能
高性能
kdb+ 以其速度和性能而闻名,其列式存储格式和 q 语言允许快速查询和分析时序数据。
可扩展性
可扩展性
q 语言
q 语言是一种强大、富有表现力的高级语言,用于在 kdb+ 中查询和操作数据。它结合了类似 SQL 的语法和函数式编程风格。
Apache Pinot 功能
实时摄取
Pinot 支持从 Kafka 和其他流媒体源实时数据摄取,从而实现最新的分析。
可扩展性
可扩展性
低延迟查询处理
Pinot 的列式存储格式和各种性能优化允许对复杂查询进行近乎即时的响应。
Kdb 用例
金融数据分析
kdb+ 广泛应用于金融行业,用于存储和分析股票市场交易、报价和其他时序金融数据。
高频交易
kdb+ 因其高性能和处理大量实时数据的能力而成为高频交易应用程序的热门选择。
物联网和传感器数据
kdb+ 可用于存储和分析物联网设备和传感器生成的大量时序数据,尽管其主要重点仍然是金融数据。
Apache Pinot 用例
实时分析
Pinot 旨在支持实时分析,使其适用于需要对大规模数据进行最新洞察的用例,例如监控和警报系统、欺诈检测和推荐引擎。
广告技术和用户分析
Apache Pinot 经常用于广告技术和用户分析领域,在这些领域中,低延迟、高并发分析对于理解用户行为、优化广告活动和个性化用户体验至关重要。
异常检测和监控
Pinot 的实时分析功能使其适用于异常检测和监控用例,使用户能够识别数据中不寻常的模式或趋势,并在需要时采取纠正措施。
Kdb 定价模型
kdb+ 是一种商业产品,定价取决于部署模型和使用的核心或服务器数量。Kx Systems 提供免费的 32 位 kdb+ 版本供非商业用途,但对可以使用的内存量有限制。对于商业部署和全功能版本,用户必须联系 Kx Systems 了解定价详情。
Apache Pinot 定价模型
作为一个开源项目,Apache Pinot 可以免费使用。但是,组织在部署和管理 Pinot 集群时可能会产生与硬件、基础设施和支持相关的成本。没有与 Apache Pinot 本身相关的特定定价选项或部署模型。
免费开始使用 InfluxDB
InfluxDB Cloud 是开始存储和分析时序数据的最快方式。