在构建任何软件应用程序时,选择合适的数据库都是至关重要的。所有数据库在性能方面都有不同的优势和劣势,因此,为您的特定用例和数据模型决定哪个数据库具有最大的优势和最小的缺点是一项重要的决策。下面您将找到 AWS DynamoDB 和 StarRocks 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。
本文的主要目的是比较 AWS DynamoDB 和 StarRocks 在涉及时序数据的工作负载方面的性能,而不是所有可能的用例。时序数据通常在数据库性能方面提出了独特的挑战。这是由于正在写入的大量数据以及访问该数据的查询模式。本文并非旨在说明哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。
AWS DynamoDB 与 StarRocks 细分
![]() |
||
数据库模型 | 键值和文档存储 |
数据仓库 |
架构 | DynamoDB 是由 Amazon Web Services (AWS) 提供的完全托管的无服务器 NoSQL 数据库。它为高性能用例使用个位数毫秒延迟,并支持键值和文档数据模型。数据在 AWS 区域内的多个可用区之间进行分区和复制,DynamoDB 支持读取操作的最终一致性或强一致性 |
StarRocks 可以根据您的基础设施偏好和要求,部署在本地、云端或混合环境中。 |
许可证 | 闭源 |
Apache 2.0 |
用例 | 无服务器 Web 应用程序、实时竞价平台、游戏排行榜、物联网数据管理、高速数据处理 |
商业智能、分析、实时数据处理、大规模数据存储 |
可扩展性 | 自动扩展以处理大量读取和写入吞吐量,支持按需容量和自动扩展,全局表用于多区域复制 |
水平可扩展,支持分布式存储和查询处理 |
正在寻找最有效率的入门方式?
无论您是在寻求成本节约、降低管理开销还是开源,InfluxDB 都能提供帮助。
AWS DynamoDB 概览
Amazon DynamoDB 是 AWS 提供的托管 NoSQL 数据库服务。它于 2012 年首次推出,旨在提供低延迟、高吞吐量的性能。DynamoDB 基于 Amazon 工程师于 2007 年发布的 Dynamo 论文的原则构建,旨在提供高度可用、可扩展且分布式的键值存储。
StarRocks 概览
StarRocks 是一款开源高性能分析型数据仓库,支持实时、多维和高并发数据分析。它采用 MPP(大规模并行处理)架构,并配备了完全向量化的执行引擎和支持实时更新的列式存储引擎。
AWS DynamoDB 用于时序数据
DynamoDB 可以与时序数据一起使用,尽管与专门的时序数据库相比,它可能不是最优化的解决方案。要在 DynamoDB 中存储时序数据,您可以使用复合主键,其中分区键用于实体标识符,排序键用于时间戳。这使您可以有效地查询特定实体和时间范围内的数据。但是,DynamoDB 在处理时序数据时的主要缺点是它缺乏对数据聚合和降采样的内置支持,而数据聚合和降采样是时序分析的常见要求。您可能需要在应用程序中执行这些操作,或使用 AWS Lambda 等其他服务来处理数据。
StarRocks 用于时序数据
StarRocks 主要专注于数据仓库工作负载,但可用于时序数据。StarRocks 可用于实时分析和历史数据分析。
AWS DynamoDB 关键概念
DynamoDB 特有的一些关键术语和概念包括
- 表:在 DynamoDB 中,数据存储在表中,表是项目的容器。每个表都有一个主键,用于唯一标识表中的每个项目。
- 项目:项目是 DynamoDB 表中的单个记录,由一个或多个属性组成。
- 属性:属性是构成表中项目的键值对。DynamoDB 支持标量、文档和集合数据类型的属性。
- 主键:主键唯一标识表中的每个项目,它可以是单属性分区键或复合分区排序键。
StarRocks 关键概念
- MPP 架构:StarRocks 采用 MPP 架构,该架构支持并行处理和分布式查询执行,从而实现高性能和可扩展性。
- 向量化执行引擎:StarRocks 采用完全向量化的执行引擎,该引擎利用 SIMD(单指令多数据)指令批量处理数据,从而优化查询性能。
- 列式存储引擎:StarRocks 中的列式存储引擎按列组织数据,这通过仅在查询执行期间访问必要的列来提高查询性能。
- 基于成本的优化器 (CBO):StarRocks 包含一个完全自定义的基于成本的优化器,该优化器评估不同的查询执行计划,并根据估计成本选择最有效的计划。
- 物化视图:StarRocks 支持智能物化视图,这些视图是数据的预计算摘要,通过提供对聚合数据的更快访问来加速查询性能。
AWS DynamoDB 架构
DynamoDB 是一个 NoSQL 数据库,使用键值存储和文档数据模型。它旨在通过自动跨多个服务器分区数据并使用复制来确保容错能力,从而提供高可用性、持久性和可扩展性。DynamoDB 的一些主要组件包括
- 分区:DynamoDB 根据分区键自动分区数据,从而确保数据均匀分布在多个存储节点上。
- 复制:DynamoDB 跨 AWS 区域内的多个可用区复制数据,从而提供高可用性和持久性。
- 一致性:DynamoDB 提供两种一致性模型:最终一致性和强一致性,允许您为您的应用程序选择适当的一致性级别。
StarRocks 架构
StarRock 的架构包括完全向量化的执行引擎和列式存储引擎,用于高效的数据处理和存储。它还集成了基于成本的优化器和物化视图等功能,以优化查询性能。StarRocks 支持从各种来源实时和批量数据摄取,并支持直接分析存储在数据湖中的数据,而无需数据迁移
免费时序数据库指南
获取对备选方案和选择您的数据库的关键要求的全面审查。
AWS DynamoDB 功能
自动扩展
DynamoDB 可以根据工作负载自动扩展其读取和写入容量,让您在不过度配置资源的情况下保持一致的性能。
备份和还原
DynamoDB 提供对时间点恢复的内置支持,使您能够将表恢复到过去 35 天内的先前状态。
全局表
DynamoDB 全局表使您能够跨多个 AWS 区域复制表,为全球应用程序提供低延迟访问和数据冗余。
流
DynamoDB Streams 捕获表中项目级别的修改,可用于触发 AWS Lambda 函数以进行实时处理或与其他 AWS 服务同步数据。
StarRocks 功能
多维分析
StarRocks 支持多维分析,使用户能够从不同的维度和角度探索数据。
高并发
StarRocks 旨在处理高并发级别,允许多个用户同时执行查询。
物化视图
StarRocks 支持物化视图,这些视图提供数据的预计算摘要,以获得更快的查询性能。
AWS DynamoDB 用例
会话管理
DynamoDB 可用于存储 Web 应用程序的会话数据,从而为会话信息提供快速且可扩展的访问。
游戏
DynamoDB 可用于存储在线游戏的游戏玩家数据、游戏状态和其他游戏相关信息,从而提供低延迟和高吞吐量的性能。
物联网
DynamoDB 可用于存储和处理来自物联网设备的传感器数据,从而实现设备数据的实时监控和分析。
StarRocks 用例
实时分析
StarRocks 非常适合实时分析场景,在这些场景中,用户需要分析到达的数据,从而使他们能够做出及时且数据驱动的决策。
即席查询
凭借其高性能和高并发数据分析能力,StarRocks 是即席查询的理想选择,允许用户交互式地探索和分析数据。
数据湖分析
StarRocks 支持直接从数据湖分析数据,而无需数据迁移。这使其成为组织利用数据湖进行存储和分析的宝贵工具。
AWS DynamoDB 定价模型
DynamoDB 提供两种定价选项:预置容量和按需容量。使用预置容量,您可以指定您期望应用程序每秒需要的读取和写入次数,并且您根据预置容量的量计费。此定价模型适用于具有可预测流量或逐渐增加流量的应用程序。您可以使用自动扩展根据指定的利用率自动调整表的容量,从而在确保应用程序性能的同时降低成本。
另一方面,使用按需容量,您需要为应用程序在表上执行的数据读取和写入按请求付费。您无需指定您期望应用程序执行多少读取和写入吞吐量,因为 DynamoDB 会在工作负载增加或减少时立即适应您的工作负载。此定价模型适用于具有波动或不可预测流量模式的应用程序。
StarRocks 定价模型
StarRocks 可以使用开源项目部署在您自己的硬件上。还有许多商业供应商提供托管服务,以便在云端运行 StarRocks。
免费开始使用 InfluxDB
InfluxDB Cloud 是开始存储和分析时序数据的最快方式。