在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,为您的特定用例和数据模型决定哪个数据库具有最多的优势和最少的缺点是一个重要的决定。下面您将找到 DuckDB 和 MongoDB 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。
本文的主要目的是比较 DuckDB 和 MongoDB 在涉及时序数据的工作负载方面的性能,而不是所有可能的用例。时序数据通常在数据库性能方面提出了独特的挑战。这是由于大量数据被写入以及访问该数据的查询模式造成的。本文不打算说明哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。
DuckDB vs MongoDB 细分
![]() |
![]() |
|
数据库模型 | 列式数据库 |
文档数据库 |
架构 | DuckDB 旨在用作嵌入式数据库,主要关注单节点性能。 |
MongoDB 使用灵活的、类似 JSON 的文档模型来存储数据,这允许动态模式更改而无需停机。它支持即席查询、索引和实时聚合。MongoDB 可以部署为独立服务器、用于高可用性的副本集配置或用于水平扩展的分片集群。它也可以作为名为 MongoDB Atlas 的托管云服务使用,该服务提供自动备份、监控和全球分发等附加功能。 |
许可证 | MIT |
社区版的 SSPL,其他版本的商业许可证 |
用例 | 嵌入式分析、数据科学、数据处理、ETL 管道 |
内容管理系统、移动应用程序、实时分析、物联网数据管理、电子商务平台 |
可扩展性 | 嵌入式和单节点聚焦,对并行性的支持有限 |
水平可扩展,支持数据分片、复制和自动负载均衡 |
正在寻找最有效的方式开始?
无论您是寻求成本节约、更低的管理开销还是开源,InfluxDB 都能帮助您。
DuckDB 概述
DuckDB 是一个进程内 SQL OLAP(在线分析处理)数据库管理系统。它被设计为简单、快速且功能丰富。DuckDB 可用于处理和分析表格数据集,例如 CSV 或 Parquet 文件。它提供丰富的 SQL 方言,支持事务、持久性、广泛的 SQL 查询以及 Parquet 和 CSV 文件的直接查询。DuckDB 构建于矢量化引擎之上,该引擎针对分析进行了优化,并支持并行查询处理。它被设计为易于安装和使用,没有外部依赖项,并支持多种编程语言。
MongoDB 概述
MongoDB 是一个流行的开源 NoSQL 数据库,于 2009 年推出。MongoDB 旨在处理大量非结构化和半结构化数据,提供灵活的、无模式的数据模型、水平可扩展性和高性能。其易用性、基于 JSON 的文档存储以及对各种编程语言的支持使其在各个行业和应用中得到广泛采用。
DuckDB 用于时序数据
DuckDB 可以有效地用于时序数据。它支持处理和分析表格数据集,其中可以包括存储在 CSV 或 Parquet 文件中的时序数据。凭借其优化的分析引擎和对复杂 SQL 查询的支持,DuckDB 可以高效地执行聚合、连接和其他时序分析操作。但是,重要的是要注意,DuckDB 不是专门为时序数据管理而设计的,并且可能没有像某些专用时序数据库那样针对时序分析的专门功能。
MongoDB 用于时序数据
尽管 MongoDB 是一个通用的 NoSQL 数据库,但它可以用于存储和处理时序数据。MongoDB 灵活的数据模型允许轻松适应时序数据不断演变的结构,例如添加新指标或修改现有指标。MongoDB 提供对生存时间 (TTL) 索引的内置支持,这些索引会在指定时间段后自动过期旧数据,使其适用于管理具有有限存储容量的大量时序数据。MongoDB 最近还为时序用例添加了自定义列式存储引擎和时序集合,旨在提高默认 MongoDB 存储引擎在数据压缩和查询性能方面的性能。
DuckDB 关键概念
- 进程内:DuckDB 在进程内运行,这意味着它在与使用它的应用程序相同的进程中运行,而无需单独的服务器。
- OLAP:DuckDB 是一个 OLAP 数据库,这意味着它针对分析查询处理进行了优化。
- 矢量化引擎:DuckDB 利用矢量化引擎,该引擎对批量数据进行操作,从而提高查询性能。
- 事务:DuckDB 支持事务操作,确保数据操作的原子性、一致性、隔离性和持久性 (ACID) 属性。
- SQL 方言:DuckDB 提供丰富的 SQL 方言,具有高级功能,例如任意和嵌套相关子查询、窗口函数、排序规则以及对数组和结构体等复杂类型的支持
MongoDB 关键概念
MongoDB 特有的一些关键术语和概念包括
- 数据库:MongoDB 数据库是集合的容器,集合是相关文档的组。
- 集合:MongoDB 中的集合类似于关系数据库中的表,其中包含一组文档。
- 文档:MongoDB 中的文档是单个记录,以称为 BSON(二进制 JSON)的类似 JSON 的格式存储。集合中的文档可以具有不同的结构。
- 字段:字段是文档中的键值对,类似于关系数据库中的属性或列。
- 索引:MongoDB 中的索引是一种数据结构,可提高集合中特定字段的查询性能。
DuckDB 架构
DuckDB 遵循进程内架构,在与应用程序相同的进程中运行。它是一个面向关系的表数据库管理系统,支持 SQL 查询以生成分析结果。DuckDB 使用 C++11 构建,旨在没有外部依赖项。它可以编译为单个文件,使其易于安装和集成到应用程序中。
MongoDB 架构
MongoDB 的架构以其灵活的、基于文档的数据模型为中心。作为 NoSQL 数据库,MongoDB 支持无模式结构,该结构允许存储和查询各种数据类型,例如嵌套数组和文档。MongoDB 可以部署为独立服务器、副本集或分片集群。副本集通过自动故障转移和数据冗余提供高可用性,而分片集群通过基于分片键在多台服务器之间分发数据来实现水平扩展和负载均衡。
免费时序数据库指南
获取对备选项的全面回顾以及选择数据库的关键要求。
DuckDB 功能
事务和持久性
DuckDB 支持事务操作,确保数据完整性和持久性。它允许在会话之间持久存储数据。
广泛的 SQL 支持
DuckDB 提供丰富的 SQL 方言,支持高级查询功能,包括相关子查询、窗口函数和复杂数据类型。
直接 Parquet 和 CSV 查询
DuckDB 允许直接查询 Parquet 和 CSV 文件,从而可以高效分析以这些格式存储的数据。
快速分析查询
DuckDB 旨在高效运行分析查询,这得益于其矢量化引擎和针对分析工作负载的优化。
并行查询处理
DuckDB 可以并行处理查询,利用多核处理器来提高查询性能。
MongoDB 功能
灵活的数据模型
MongoDB 的无模式数据模型允许存储和查询各种数据类型,使其非常适合处理复杂和不断演变的数据结构。
高可用性
MongoDB 的副本集功能通过自动故障转移和数据冗余确保高可用性。
水平可扩展性
MongoDB 的分片集群架构支持水平扩展和负载均衡,使其能够处理大规模数据处理和查询。
DuckDB 用例
处理和存储表格数据集
DuckDB 非常适合需要处理和存储表格数据集的场景,例如从 CSV 或 Parquet 文件导入的数据。它为处理结构化数据提供了高效的存储和检索机制。
交互式数据分析
DuckDB 非常适合交互式数据分析任务,尤其是在处理大型表时。它使您能够高效地执行复杂的运算,如连接和聚合多个大型表,从而可以快速探索和从数据中提取见解。
将大型结果集传输到客户端
当您需要将大型结果集从数据库传输到客户端应用程序时,DuckDB 可能是一个合适的选择。其优化的查询处理和高效的数据传输机制使大型数据的快速无缝检索成为可能。
MongoDB 用例
内容管理系统
MongoDB 灵活的数据模型使其成为内容管理系统的理想选择,内容管理系统通常需要存储和管理各种内容类型(如文章、图像和视频)的能力。MongoDB 的无模式特性允许轻松适应不断变化的内容结构和需求。
物联网数据存储和分析
MongoDB 对高数据量和水平可扩展性的支持使其适用于存储和处理物联网设备生成的数据,例如传感器读数和设备日志。其高效索引和查询数据的能力允许对物联网设备进行实时分析和监控。
电子商务平台
MongoDB 的灵活性和性能特性使其成为电子商务平台的绝佳选择,在电子商务平台中,需要高效地存储和查询各种产品信息、客户数据和交易记录。灵活的数据模型使您可以轻松适应产品属性和客户偏好的变化,而高可用性和可扩展性功能可确保流畅且响应迅速的用户体验。
DuckDB 定价模型
DuckDB 是一个免费的开源数据库管理系统,根据宽松的 MIT 许可证发布。它可以免费使用、修改和分发,没有任何许可成本。
MongoDB 定价模型
MongoDB 提供各种定价选项,包括免费的开源社区版和商业企业版,后者包括高级功能、管理工具和支持。MongoDB Inc. 还提供完全托管的基于云的数据库即服务 MongoDB Atlas,采用按需付费的定价模式,该模式基于存储、数据传输和计算资源。MongoDB Atlas 为想要尝试该服务而无需承担费用的用户提供资源有限的免费层。
免费开始使用 InfluxDB
InfluxDB Cloud 是开始存储和分析时序数据的最快方式。