在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,为您的特定用例和数据模型决定哪个数据库的优势最大,劣势最小是一个重要的决定。下面您将找到 Apache Druid 和 QuestDB 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。
本文的主要目的是比较 Apache Druid 和 QuestDB 在涉及时间序列数据的工作负载中的性能,而不是所有可能的用例。时间序列数据通常在数据库性能方面提出了独特的挑战。这是因为写入的数据量很大以及访问数据的查询模式。本文无意说明哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。
Apache Druid 与 QuestDB 细分
![]() |
![]() |
|
数据库模型 | 列式数据库 |
时间序列数据库 |
架构 | Druid 可以部署在本地、云端或使用托管服务 |
QuestDB 专为水平扩展而设计,使您能够跨多个节点分发数据和查询,以提高性能和可用性。它可以根据您的基础设施需求和偏好部署在本地、云端或作为混合解决方案。 |
许可证 | Apache 2.0 |
Apache 2.0 |
用例 | 实时分析、OLAP、时间序列数据、事件驱动数据、日志分析、广告技术、用户行为分析 |
监控、可观测性、物联网、实时分析、金融服务、高频交易 |
可扩展性 | 水平可扩展,支持分布式架构以实现高可用性和性能 |
高性能,支持水平扩展和多线程 |
正在寻找最有效的入门方式?
无论您是在寻求成本节约、降低管理开销还是开源,InfluxDB 都能提供帮助。
Apache Druid 概述
Apache Druid 是一个开源的实时分析数据库,专为高性能查询和数据摄取而设计。Druid 最初由 Metamarkets 于 2011 年开发,后来于 2018 年捐赠给 Apache 软件基金会,因其能够以低延迟处理大量数据而广受欢迎。Druid 具有独特的架构,结合了时间序列数据库、搜索系统和列式存储的元素,特别适合涉及事件驱动数据和交互式分析的用例。
QuestDB 概述
QuestDB 是一个开源的关系型列式数据库,专为时间序列和事件数据而设计。它将高性能摄取能力与 SQL 分析相结合,使其成为管理和分析大量基于时间的数据的强大工具。QuestDB 解决了处理高吞吐量的挑战,并提供了一种通过 SQL 查询分析摄取数据的简单方法。它非常适合金融市场数据和应用程序指标等用例。
Apache Druid 用于时间序列数据
Apache Druid 专为实时分析而设计,非常适合处理需要在写入后快速分析的时间序列数据。Druid 还提供集成,用于将历史数据存储在更便宜的对象存储中,以便也可以使用 Druid 分析历史时间序列数据。
QuestDB 用于时间序列数据
QuestDB 擅长管理和分析时间序列数据。凭借其高性能的摄取能力,它可以处理高数据吞吐量,使其适用于实时数据摄取场景。QuestDB 的时间序列 SQL 扩展使用户能够执行实时分析,并从其时间戳数据中获得有价值的见解。无论是金融市场数据还是应用程序指标,QuestDB 都通过其快速的 SQL 查询和操作简易性简化了摄取和分析时间序列数据的过程。
Apache Druid 关键概念
- 数据摄取:将数据从各种来源(例如流式或批量数据源)导入 Druid 的过程。
- 段:Druid 中最小的数据存储单元,段是不可变的、分区的和压缩的。
- 数据汇总:在摄取期间聚合原始数据的过程,以减少存储需求并提高查询性能。
- 节点:Druid 的架构由不同类型的节点组成,包括 Historical、Broker、Coordinator 和 MiddleManager/Overlord,每个节点都有特定的职责。
- 索引服务:Druid 的索引服务管理摄取数据、创建段以及将它们发布到深度存储的过程。
QuestDB 关键概念
- 时间序列:QuestDB 专注于时间序列数据,它表示按时间索引的数据点。它经过优化,可以高效地存储和处理时间戳数据。
- 列式导向:QuestDB 采用列式存储格式,其中数据按列而不是按行组织和存储。这种格式可以实现高效的压缩和更快的查询性能。
- SQL 扩展:QuestDB 使用专门为时间序列数据定制的功能扩展了 SQL 语言。这些扩展有助于实时分析,并允许用户利用熟悉的 SQL 结构来查询基于时间的数据。
Apache Druid 架构
Apache Druid 是一个强大的分布式数据存储,专为对大型数据集进行实时分析而设计。在其架构中,几个核心组件在确保其效率和可扩展性方面发挥着关键作用。以下是对驱动 Apache Druid 的核心组件的概述。
- 历史节点是 Druid 数据服务能力的基础。它们的主要职责是为查询提供存储的数据。为了实现这一点,它们从深度存储加载段,将它们保留在内存中,然后处理对这些段的查询。在考虑部署和管理时,这些节点通常驻留在配备大量内存和 CPU 资源的机器上。它们的可扩展性显而易见,因为只需合并更多节点即可水平扩展它们。
- Broker 节点充当传入查询的网关。它们的主要功能是将这些查询引导到适当的历史节点或实时节点。有趣的是,它们是无状态的,这意味着可以扩展它们以适应查询并发性的增加。
- Coordinator 节点具有管理角色,负责监督历史节点之间的数据分发。它们关于加载或删除哪些段的决定基于特定的可配置规则。在部署方面,Druid 设置通常只需要一个活动的协调器节点,以及一个备用节点用于故障转移场景。
- Overlord 节点决定摄取任务的分配,将它们定向到 middle manager 或 indexer 节点。它们的部署与协调器节点的部署类似,通常有一个活动的 overlord 和一个备份用于冗余。
- MiddleManager 和 Indexer 节点是 Druid 中数据摄取的主力。虽然 MiddleManagers 启动用于数据摄取的短期任务,但 indexer 专为长期任务而设计。鉴于它们的密集操作,这些节点需要高 CPU 和内存资源。它们的可扩展性很灵活,允许根据数据摄取量进行水平扩展。
- 深度存储是充当 Druid 持久存储单元的组件。Druid 与各种 blob 存储解决方案集成,如 HDFS、S3 和 Google Cloud Storage。
- 元数据存储库是关于段、任务和配置的关键元数据的存储库。Druid 与用于此目的的流行数据库兼容,包括 MySQL、PostgreSQL 和 Derby。
QuestDB 架构
QuestDB 遵循混合架构,该架构结合了列式和行式数据库的特性。它利用列式存储格式来实现高效的压缩和查询性能,同时保留使用 SQL 功能处理关系数据的能力。QuestDB 同时支持 SQL 和类似 NoSQL 的功能,为用户在数据建模和查询方法方面提供了灵活性。该数据库由多个组件组成,包括摄取引擎、存储引擎和查询引擎,它们协同工作以确保高性能的数据摄取和检索。
免费时间序列数据库指南
获取关于备选方案和选择您的数据库的关键要求的全面审查。
Apache Druid 功能
数据摄取
Apache Druid 支持实时和批量数据摄取,使其能够处理来自各种来源的数据,如 Kafka、Hadoop 或本地文件。凭借对数据分区、复制和汇总的内置支持,Druid 确保了高可用性和高效存储。
可扩展性和性能
Druid 旨在水平扩展,为大规模部署提供支持,同时最大限度地减少性能下降。其独特的架构允许快速高效的查询,使其适用于需要低延迟分析的用例。
列式存储
与基于行的存储系统相比,Druid 以列式格式存储数据,从而实现更好的压缩和更快的查询性能。列式存储还允许 Druid 通过仅访问相关列来优化查询。
时间优化索引
Druid 的索引服务创建具有基于时间的分区的段,从而优化时间序列数据的数据存储和检索。此功能显着提高了基于时间的查询的查询性能。数据汇总
Druid 的数据汇总功能在摄取期间聚合原始数据,从而减少存储需求并提高查询性能。此功能对于涉及高基数数据或大量相似数据点的用例尤其有利。
QuestDB 功能
高性能摄取
QuestDB 针对高吞吐量摄取进行了优化,允许用户以高速高效地摄取大量时间序列数据。
快速 SQL 查询
QuestDB 提供快速 SQL 查询来分析时间序列数据。它使用时间序列特定功能扩展了 SQL 语言,以帮助进行实时分析。
操作简易性
QuestDB 旨在提供具有操作简易性的用户友好体验。它支持使用流行的协议(如 InfluxDB 行协议和 PostgreSQL 线协议)进行与模式无关的摄取。此外,REST API 可用于批量导入和导出,从而简化数据管理任务。
Apache Druid 用例
地理空间分析
Apache Druid 提供对地理空间数据和查询的支持,使其适用于涉及基于位置的数据的用例,例如跟踪资产的移动、分析用户位置或监控事件的分布。它高效处理大量地理空间数据的能力使用户能够获得见解并根据位置信息做出数据驱动的决策。
机器学习与人工智能
Druid 的高性能数据处理能力可用于机器学习和人工智能工作流程中的预处理和特征提取。它对实时数据摄取和低延迟查询的支持使其适用于需要实时预测或见解的用例,例如推荐系统或预测性维护。
实时分析
Apache Druid 的低延迟查询和实时数据摄取能力使其成为实时分析用例的理想解决方案,例如监控应用程序性能、用户行为或业务指标。
QuestDB 用例
金融市场数据
QuestDB 非常适合管理和分析金融市场数据。其高性能摄取和快速 SQL 查询能够实时高效地处理和分析大量市场数据。
应用程序指标
QuestDB 可用于收集和分析应用程序指标。它处理高数据吞吐量和提供实时分析功能的能力使其适用于监控和分析性能指标、日志和其他应用程序相关数据。
物联网数据分析
QuestDB 的高性能摄取和时间序列分析功能使其成为分析物联网传感器数据的有价值的工具。
Apache Druid 定价模型
Apache Druid 是一个开源项目,因此,它可以免费自托管,无需许可费用。但是,选择自托管 Druid 的组织在自己的环境中部署和运行 Druid 时,将产生与基础设施、管理和支持相关的费用。这些成本将取决于组织的具体要求和选择的基础设施,无论是在本地还是在云端。
对于那些喜欢托管解决方案的人,可以使用云服务,例如 Imply Cloud,它提供 Apache Druid 作为托管服务。使用托管服务,提供商负责处理基础设施、管理和支持,从而简化了 Druid 的部署和操作。这些托管服务的定价将因提供商和选择的服务层级而异,其中可能包括数据存储、查询容量和数据摄取速率等因素。
QuestDB 定价模型
QuestDB 是一个根据 Apache 2 许可证发布的开源项目。它可以免费使用,不需要任何许可费用。用户可以在 GitHub 上访问源代码,并在自己的基础设施上部署 QuestDB,而无需承担直接成本。QuestDB 还提供托管云服务。
免费开始使用 InfluxDB
InfluxDB Cloud 是开始存储和分析时间序列数据的最快方式。