在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,针对您的特定用例和数据模型,决定哪个数据库的优势最多,缺点最少,是一项重要的决策。以下是 Datadog 和 Prometheus 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。
本文的主要目的是比较 Datadog 和 Prometheus 在涉及时序数据的工作负载方面的性能,而不是所有可能的用例。时序数据通常在数据库性能方面提出独特的挑战。这是由于正在写入的大量数据以及访问该数据的查询模式。本文并非旨在说明哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。
Datadog 与 Prometheus 对比细分
![]() |
![]() |
|
数据库模型 | 云可观测平台 |
时序数据库 |
架构 | 基于云的 SaaS 平台 |
Prometheus 使用基于拉取的模型,它以给定的间隔从配置的目标抓取指标。它以自定义、高效的本地存储格式存储时序数据,并支持多维数据收集、查询和警报。它可以作为单个二进制文件部署在服务器上,也可以部署在 Kubernetes 等容器平台上。 |
许可证 | 闭源 |
Apache 2.0 |
用例 | 基础设施监控、应用程序性能监控、日志管理 |
监控、警报、可观测性、系统指标、应用程序指标 |
可扩展性 | 水平可扩展,内置支持多云和全球部署。 |
Prometheus 专为可靠性而设计,可以垂直扩展(具有增加资源的单节点)或通过联邦(分层设置,其中 Prometheus 服务器从其他 Prometheus 服务器抓取指标)进行扩展 |
正在寻找最有效的入门方式?
无论您是寻求节省成本、降低管理开销还是开源,InfluxDB 都能为您提供帮助。
Datadog 概述
Datadog 是一个监控和分析平台,它集成了基础设施监控、应用程序性能监控 (APM) 和日志管理,并将其自动化,从而为组织整个技术堆栈提供统一的实时可观测性。Datadog 成立于 2010 年,已迅速成为云规模监控的首选解决方案,提供基于 SaaS 的功能,使企业能够提高敏捷性、提高效率,并在动态、高规模基础设施中提供端到端的可视性。
Prometheus 概述
Prometheus 是一个开源监控和警报工具包,最初于 2012 年在 SoundCloud 开发。此后,它已成为广泛采用的监控解决方案,并且是云原生计算基金会 (CNCF) 项目的一部分。Prometheus 专注于为容器化和基于微服务的环境提供实时洞察和警报。它的主要用例是监控基础设施和应用程序,重点是可靠性和可扩展性。
Datadog 用于时序数据
Datadog 通过其基于指标的架构,在处理时序数据方面表现出色。它经过优化,可以收集和分析随时间推移的数据点,例如 CPU 使用率、内存消耗或请求延迟。虽然 Datadog 不是专门的时序数据库,但它集成了长期数据保留、聚合和可视化等功能,使其非常适合监控时间相关的指标。但是,与 InfluxDB 等专用时序数据库相比,它可能不是大规模实时分析的理想选择。
Prometheus 用于时序数据
Prometheus 专为时序数据而设计,因为它的主要重点是基于基础设施和应用程序状态的监控和警报。它使用基于拉取的模型,Prometheus 服务器定期从目标系统抓取指标。此模型适用于监控动态环境,因为它允许自动发现和监控新实例。但是,Prometheus 并非旨在作为通用时序数据库,可能不是高基数或长期数据存储的最佳选择。
Datadog 关键概念
- Datadog Agent:Datadog Agent 是一个轻量级软件,安装在您的服务器、容器或端点上,用于收集和报告指标、日志和跟踪。它充当您的系统和 Datadog 平台之间的主要桥梁。
- 仪表板:Datadog 中的仪表板提供了一个可自定义的界面,用于可视化指标、日志和跟踪。它们支持各种小部件,包括时序图、仪表和热图,以有意义的方式呈现数据。
- 集成:Datadog 支持 600 多个集成,以连接各种技术,例如数据库、云提供商和容器编排器。每个集成都会收集相关的指标、日志和事件,并且可能需要通过 Agent 进行特定配置。
- 事件:事件是通过 Agent、集成或自定义应用程序流式传输到 Datadog 的数据。它们被流式传输到 Datadog,可用于过滤和关联应用程序中发生的情况
- 标签:标签是分配给指标、日志和跟踪的元数据,用于对数据进行分组、过滤和搜索。有效使用标签(例如环境、区域或服务)对于高效组织和分析数据至关重要。
Prometheus 关键概念
- 指标:系统特定方面的数字表示,例如 CPU 使用率或内存消耗。
- 时序:指标的数据点集合,按时间戳索引。
- 标签:键值对,为指标提供元数据和上下文,从而实现更精细的查询和聚合。
- PromQL:Prometheus 使用其自己的查询语言 PromQL(Prometheus 查询语言)来查询时序数据和生成警报。
Datadog 架构
Datadog 采用 SaaS(软件即服务)模型,具有高度分布式、基于云的架构。它使用 Agent 从各种来源收集数据,然后这些数据在 Datadog 的云中进行处理和存储。该平台支持结构化和非结构化数据,其后端利用现代分布式系统原则来确保可扩展性和可靠性。关键组件包括数据摄取管道、指标存储、日志处理系统和查询引擎。
Prometheus 架构
Prometheus 是一个单服务器、独立监控系统,它使用基于拉取的方法从目标系统收集指标。它以自定义、高度压缩的磁盘格式存储时序数据,该格式针对快速查询和低资源使用率进行了优化。Prometheus 的架构是模块化和可扩展的,组件包括导出器、服务发现机制以及与其他监控系统的集成。作为一个非分布式系统,它缺乏内置的集群或水平可扩展性,但它支持联邦,允许多个 Prometheus 服务器共享和聚合数据。
免费时序数据库指南
获取对替代方案和选择您的替代方案的关键要求的全面审查。
Datadog 功能
实时仪表板
Datadog 提供可自定义的实时仪表板,使用户能够在一个地方监控各种指标、跟踪和日志。这种集中视图有助于快速检测和解决问题。这些仪表板是交互式的,可以深入查看细粒度细节,从而有助于精确的故障排除和根本原因分析。
自动警报
Datadog 中的自动警报可以实时通知团队任何问题或异常。可以微调这些警报以避免噪音和误报,确保只有可操作的见解受到关注。它们还可以与 Slack 或 PagerDuty 等第三方通信工具集成,以实现无缝事件响应。
综合监控
Datadog 的综合监控允许用户模拟用户事务并监控应用程序的正常运行时间、延迟和功能。此功能确保关键端点保持可用且性能良好。
Prometheus 功能
基于拉取的模型
Prometheus 通过主动抓取目标来收集指标,从而实现动态环境的自动发现和监控。
PromQL
强大的 Prometheus 查询语言允许对时序数据进行富有表现力和灵活的查询。
警报
Prometheus 支持基于用户定义的规则的警报,并与各种警报管理和通知系统集成。
Datadog 用例
基础设施监控
Datadog 的主要用例之一是实时基础设施监控。企业可以将服务器、容器、数据库等所有内容集中在一个地方进行监控。全面的覆盖范围有助于团队快速识别性能瓶颈或可用性问题,从而最大限度地减少停机时间并提高系统可靠性。
应用程序性能监控
Datadog 的 APM 功能使组织能够跟踪请求在应用程序的各种服务和组件之间传递的过程。这对于微服务架构至关重要,在微服务架构中,了解服务之间的交互可能很复杂。它有助于识别可能影响应用程序整体性能的慢速服务。
安全监控
Datadog 通过从各种来源收集日志和指标,帮助组织监控与安全相关的事件。它有助于检测异常活动、未经授权的访问和潜在威胁。通过关联堆栈中的数据,安全团队可以更有效地调查事件。Datadog 的合规性监控功能支持遵守 PCI DSS、HIPAA 和 GDPR 等标准。
Prometheus 用例
基础设施监控
Prometheus 广泛用于监控容器化和基于微服务的 инфраструктуры 的运行状况和性能,包括 Kubernetes 和 Docker 环境。
应用程序性能监控 (APM)
Prometheus 可以使用客户端库收集自定义应用程序指标,并实时监控应用程序性能。
警报和异常检测
Prometheus 使组织能够根据特定阈值或条件设置警报,从而帮助他们快速识别和响应潜在问题或异常。
Datadog 定价模型
Datadog 使用模块化、基于使用量的定价模型,客户根据他们使用的特定产品和数据量付费。定价通常在不同的产品之间分配,例如基础设施监控、APM、日志等。每个产品都有自己的定价结构,通常基于主机数量、实例或摄取的数据。Datadog 提供具有有限功能和数据上限的免费层,以及提供高级功能和更高限制的 Pro 和 Enterprise 层。
Prometheus 定价模型
Prometheus 是一个开源项目,其使用不收取任何许可费。但是,在部署自托管 Prometheus 服务器时,可能会产生硬件、托管和运营费用。此外,一些基于云的托管 Prometheus 服务(例如 Grafana Cloud 和 Weave Cloud)提供不同的定价模型,具体取决于数据保留、查询速率和支持等因素。
免费开始使用 InfluxDB
InfluxDB Cloud 是开始存储和分析时序数据的最快方式。