在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,针对您的特定用例和数据模型,决定哪个数据库的优势最多,缺点最少,是一项重要的决策。下面您将找到 Datadog 和 Kdb 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较情况。
本文的主要目的是比较 Datadog 和 Kdb 在涉及时序数据的工作负载方面的性能,而不是针对所有可能的用例。时序数据通常在数据库性能方面提出了独特的挑战。这是由于正在写入的大量数据以及访问这些数据的查询模式。本文并非旨在说明哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。
Datadog 与 Kdb 对比细分
![]() |
![]() |
|
数据库模型 | 云可观测平台 |
时序和列式数据库 |
架构 | 基于云的 SaaS 平台 |
Kdb 可以部署在本地、云端或作为混合解决方案。 |
许可 | 闭源 |
闭源 |
用例 | 基础设施监控、应用程序性能监控、日志管理 |
高频交易、金融服务、市场数据分析、物联网、实时分析 |
可扩展性 | 水平可扩展,内置支持多云和全球部署。 |
高度可扩展,支持多线程和多节点,适用于大规模数据处理 |
正在寻找最有效的入门方式?
无论您是寻求节省成本、降低管理开销还是开源,InfluxDB 都能提供帮助。
Datadog 概述
Datadog 是一个监控和分析平台,它集成了基础设施监控、应用程序性能监控 (APM) 和日志管理,并将其自动化,从而为组织整个技术堆栈提供统一的实时可观测性。Datadog 成立于 2010 年,已迅速成为云规模监控的首选解决方案,提供基于 SaaS 的功能,使企业能够提高敏捷性、提高效率,并在动态、大规模基础设施中提供端到端的可视性。
Kdb 概述
kdb+ 是由 Kx Systems 开发的高性能列式时序数据库。kdb+ 于 2003 年发布,旨在高效管理大量数据,主要关注金融数据,例如股票市场交易和报价。它建立在 q 编程语言的原则之上,q 编程语言是 APL 和 K 的后代。该数据库以其速度、可扩展性以及处理实时和历史数据的能力而闻名。
Datadog 用于时序数据
Datadog 通过其基于指标的架构擅长处理时序数据。它针对收集和分析随时间变化的数据点进行了优化,例如 CPU 使用率、内存消耗或请求延迟。虽然 Datadog 不是专门的时序数据库,但它集成了长期数据保留、聚合和可视化等功能,使其非常适合监控时间依赖性指标。但是,与 InfluxDB 等专门的时序数据库相比,它可能不是大规模实时分析的理想选择。
Kdb 用于时序数据
kdb+ 旨在存储时序数据,使其自然适合需要高速查询和分析大量数据的应用程序。其列式存储格式允许高效压缩和检索时序数据,而其 q 语言提供了强大而富有表现力的方式来操作和分析数据。kdb+ 在金融数据方面尤其强大,尽管它也可以用于其他类型的时序数据。
Datadog 关键概念
- Datadog Agent:Datadog Agent 是安装在您的服务器、容器或端点上的轻量级软件,用于收集和报告指标、日志和跟踪。它充当您的系统和 Datadog 平台之间的主要桥梁。
- 仪表板:Datadog 中的仪表板提供了一个可自定义的界面,用于可视化指标、日志和跟踪。它们支持各种小部件,包括时序图、仪表和热图,以有意义的方式呈现数据。
- 集成:Datadog 支持 600 多个集成,以连接各种技术,例如数据库、云提供商和容器编排器。每个集成都会收集相关的指标、日志和事件,并且可能需要通过 Agent 进行特定配置。
- 事件:事件是通过 Agent、集成或自定义应用程序流式传输到 Datadog 的数据。它们被流式传输到 Datadog,可用于过滤和关联应用程序中正在发生的事情
- 标记:标记是分配给指标、日志和跟踪的元数据,用于分组、过滤和搜索数据。有效使用标记(例如环境、区域或服务)对于有效组织和分析数据至关重要。
Kdb 关键概念
- q 语言:一种高级、特定领域的编程语言,用于在 kdb+ 中查询和操作数据。它结合了类似 SQL 的语法和函数式编程风格。
- 列式存储:kdb+ 将数据存储在列中,而不是行中,这可以更快地查询和分析时序数据。
- 表:kdb+ 将数据存储在表中,这些表类似于关系表,但侧重于列式存储和时序数据。
- 分裂表:一种表存储格式,其中每列都存储在单独的文件中,进一步提高了查询性能。
Datadog 架构
Datadog 采用 SaaS(软件即服务)模型,具有高度分布式、基于云的架构。它使用代理从各种来源收集数据,然后这些数据在 Datadog 的云中进行处理和存储。该平台支持结构化和非结构化数据,其后端利用现代分布式系统原则来确保可扩展性和可靠性。关键组件包括数据摄取管道、指标存储、日志处理系统和查询引擎。
Kdb 架构
kdb+ 是一种列式时序数据库,它采用定制的数据模型,专为高效存储和查询时序数据而设计。它不使用传统的 SQL,而是依赖 q 语言进行查询和数据操作。kdb+ 的架构专为内存和磁盘存储而设计,并能够跨多台机器水平扩展。kdb+ 的主要组件是数据库引擎、q 语言解释器和内置 Web 服务器。
免费时序数据库指南
获取对备选方案和选择您的数据库的关键要求的全面审查。
Datadog 功能
实时仪表板
Datadog 提供可自定义的实时仪表板,使用户能够在一个地方监控各种指标、跟踪和日志。这种集中式视图有助于快速检测和解决问题。这些仪表板是交互式的,可以深入查看详细信息,从而方便进行精确的故障排除和根本原因分析。
自动警报
Datadog 中的自动警报可以实时通知团队任何问题或异常。可以微调这些警报以避免噪音和误报,确保只有可操作的见解才能引起注意。它们还可以与 Slack 或 PagerDuty 等第三方通信工具集成,以实现无缝事件响应。
合成监控
Datadog 的合成监控允许用户模拟用户事务并监控应用程序的正常运行时间、延迟和功能。此功能可确保关键端点保持可用且性能良好。
Kdb 功能
高性能
kdb+ 以其速度和性能而闻名,其列式存储格式和 q 语言允许快速查询和分析时序数据。
可扩展性
kdb+ 旨在水平扩展,使其适合处理跨多台机器的大量数据。
q 语言
q 语言是一种强大、富有表现力且高级的语言,用于在 kdb+ 中查询和操作数据。它结合了类似 SQL 的语法和函数式编程风格。
Datadog 用例
基础设施监控
Datadog 的主要用例之一是实时基础设施监控。企业可以在一个地方监控服务器、容器、数据库等。全面的覆盖范围有助于团队快速识别性能瓶颈或可用性问题,从而最大限度地减少停机时间并提高系统可靠性。
应用程序性能监控
Datadog 的 APM 功能使组织能够跟踪请求,因为它们会遍历应用程序的各种服务和组件。这对于微服务架构至关重要,在微服务架构中,了解服务之间的交互可能很复杂。它有助于识别可能影响应用程序整体性能的慢速服务。
安全监控
Datadog 协助组织监控安全相关事件,方法是从各种来源收集日志和指标。它有助于检测异常活动、未经授权的访问和潜在威胁。通过关联堆栈中的数据,安全团队可以更有效地调查事件。Datadog 的合规性监控功能支持遵守 PCI DSS、HIPAA 和 GDPR 等标准。
Kdb 用例
金融数据分析
kdb+ 广泛用于金融行业,用于存储和分析股票市场交易、报价和其他时序金融数据。
高频交易
kdb+ 是高频交易应用程序的常用选择,因为它具有高性能和处理大量实时数据的能力。
物联网和传感器数据
kdb+ 可用于存储和分析物联网设备和传感器生成的大量时序数据,尽管其主要重点仍然是金融数据。
Datadog 定价模型
Datadog 使用模块化、基于用量的定价模型,客户根据他们使用的特定产品和数据量付费。定价通常分为不同的产品,如基础设施监控、APM、日志等。每个产品都有自己的定价结构,通常基于主机数量、实例或摄取的数据。Datadog 提供具有有限功能和数据上限的免费层,以及提供高级功能和更高限制的 Pro 和 Enterprise 层。
Kdb 定价模型
kdb+ 是一种商业产品,其定价取决于部署模型和使用的内核或服务器数量。Kx Systems 提供免费的 32 位 kdb+ 版本,供非商业用途使用,但对可以使用的内存量有限制。对于商业部署和全功能版本,用户必须联系 Kx Systems 以获取定价详情。
免费开始使用 InfluxDB
InfluxDB Cloud 是开始存储和分析时序数据的最快方式。