在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,为您的特定用例和数据模型决定哪个数据库的优势最大、缺点最少是一项重要的决策。下面您将找到 DataBend 和 OSI PI Data Historian 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。

本文的主要目的是比较 DataBend 和 OSI PI Data Historian 在涉及时间序列数据的工作负载方面的性能,而不是所有可能的用例。时间序列数据通常在数据库性能方面提出了独特的挑战。这是由于正在写入的大量数据以及访问该数据的查询模式造成的。本文不打算论证哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。

DataBend 与 OSI PI Data Historian 细分


 
数据库模型

数据仓库

时间序列数据库/数据 Historian

架构

DataBend 可以在您自己的基础设施上运行,也可以使用托管服务运行。它被设计为云原生系统,旨在利用 AWS、Google Cloud 和 Azure 等云提供商提供的许多服务。

OSIsoft PI System 是一套软件产品,专为工业环境中时间序列数据的实时数据收集、存储和分析而设计。PI System 围绕 PI Server 构建,PI Server 存储、处理数据并为客户端提供数据,它可以部署在本地或云端。

许可证

Apache 2.0

闭源

用例

数据分析、数据仓库、实时分析、大数据处理

工业数据管理、实时监控、资产健康跟踪、预测性维护、能源管理

可扩展性

水平可扩展,支持分布式计算

通过分布式架构、数据复制和数据联合支持水平扩展,以实现大规模部署

正在寻找最有效的入门方法?

无论您是在寻找成本节约、更低的管理开销还是开源,InfluxDB 都可以提供帮助。

DataBend 概述

DataBend 是一个开源的云原生数据处理和分析平台,旨在为大数据工作负载提供高性能、经济高效且可扩展的解决方案。该项目由开发者、研究人员和行业专业人士社区驱动,旨在创建一个统一的数据处理平台,将批处理和流处理能力与高级分析功能相结合。DataBend 的灵活架构允许用户构建各种应用程序,从实时分析到大规模数据仓库。

OSI PI Data Historian 概述

OSI PI,也称为 OSIsoft PI System,是一个企业级数据管理和分析平台,专门为处理来自工业过程、传感器和其他来源的时间序列数据而设计。PI System 由 OSIsoft(2021 年被 AVEVA 收购)开发,自 20 世纪 80 年代推出以来,已广泛应用于能源、制造、公用事业和制药等各个行业。它提供实时收集、存储、分析和可视化大量时间序列数据的能力,使组织能够获得洞察力、优化流程并改进决策。


DataBend 用于时间序列数据

DataBend 的架构和处理能力使其成为处理时间序列数据的合适选择。它对批处理和流数据处理的支持允许用户大规模摄取、存储和分析时间序列数据。此外,DataBend 与 Apache Arrow 的集成及其强大的查询执行框架实现了对时间序列数据的高效查询和分析,使其成为需要实时洞察和分析的应用程序的多功能选择。

OSI PI Data Historian 用于时间序列数据

OSI PI 是为存储时间序列数据而创建的,使其成为需要管理大量传感器和过程数据的组织的理想选择。它的架构和组件经过优化,可以高效且最小延迟地收集、存储和分析时间序列数据。PI System 的可扩展性和性能使其成为处理工业过程、物联网设备或其他来源生成的大量数据的组织的合适解决方案。


DataBend 关键概念

  • DataFusion:DataFusion 是 DataBend 的核心组件,提供了一个可扩展的查询执行框架,支持基于 SQL 和 DataFrame 的查询 API。
  • Ballista:Ballista 是 DataBend 内的分布式计算平台,构建于 DataFusion 之上,可以高效且可扩展地执行大规模数据处理任务。
  • Arrow:DataBend 利用 Apache Arrow,一种内存列式数据格式,以实现组件之间高效的数据交换并优化查询性能。

OSI PI Data Historian 关键概念

  • PI Server:PI System 的核心组件,负责数据收集、存储和管理。
  • PI Interfaces 和 PI Connectors:软件组件,用于从各种来源收集数据并将其发送到 PI Server。
  • PI Asset Framework:建模框架,允许用户创建资产及其关联元数据的分层结构,从而更轻松地理解和分析数据。
  • PI DataLink:Microsoft Excel 的加载项,使用户可以直接从 Excel 访问和分析 PI System 数据。
  • PI ProcessBook:可视化工具,用于创建 PI System 数据的交互式图形显示。


DataBend 架构

DataBend 构建于云原生分布式架构之上,该架构支持 NoSQL 和类 SQL 查询功能。其模块化设计允许用户根据其特定用例和需求选择和组合组件。DataBend 架构的核心组件包括 DataFusion、Ballista 和存储层。DataFusion 负责查询执行和优化,而 Ballista 则为大规模数据处理任务实现分布式计算。DataBend 中的存储层可以配置为与各种存储后端一起使用,例如对象存储或分布式文件系统。

OSI PI Data Historian 架构

OSI PI 是一个数据管理平台,围绕 PI Server 构建,PI Server 负责数据收集、存储和管理。PI System 使用高效的专有时序数据库来存储数据。PI Interfaces 和 PI Connectors 从各种来源收集数据并将其发送到 PI Server。PI Asset Framework (AF) 允许用户以分层结构建模其资产及其关联数据,从而更轻松地理解和分析数据。各种客户端工具(例如 PI DataLink 和 PI ProcessBook)使用户能够访问和可视化存储在 PI System 中的数据。

免费时序数据库指南

获取对备选方案和选择您的数据库的关键要求的全面回顾。

DataBend 功能

统一的批处理和流处理

DataBend 支持批处理和流数据处理,使用户能够构建各种需要实时或历史数据分析的应用程序。

可扩展的查询执行

DataBend 的 DataFusion 组件提供了一个强大且可扩展的查询执行框架,支持基于 SQL 和 DataFrame 的查询 API。

可扩展的分布式计算

借助其 Ballista 计算平台,DataBend 可以在分布式节点集群上高效且可扩展地执行大规模数据处理任务。

灵活的存储

DataBend 的架构允许用户配置存储层以与各种存储后端一起使用,从而为不同的用例提供灵活性和适应性。

OSI PI Data Historian 功能

数据收集和存储

OSI PI 的 PI Interfaces 和 PI Connectors 实现了从各种来源的无缝数据收集,而 PI Server 则高效地存储和管理数据。

可扩展性

PI System 具有高度可扩展性,允许组织处理大量数据和不断增长的数据源,而不会影响性能。

资产建模

PI Asset Framework (AF) 提供了一种强大的方法来建模资产及其关联数据,从而更轻松地理解和分析复杂的工业过程。

数据可视化

PI DataLink 和 PI ProcessBook 等工具使用户能够分析和可视化存储在 PI System 中的数据,从而促进更好的决策和流程优化。


DataBend 用例

实时分析

DataBend 对流数据处理的支持及其强大的查询执行框架使其成为构建实时分析应用程序(例如日志分析、监控和异常检测)的合适选择。

数据仓库

凭借其可扩展的分布式计算能力和灵活的存储选项,DataBend 可用于构建大规模数据仓库,可以高效地存储和分析大量结构化和半结构化数据。

机器学习

DataBend 处理大规模数据处理的能力及其对批处理和流数据的支持使其成为机器学习应用程序的绝佳选择。用户可以利用 DataBend 预处理、转换和分析数据,以进行特征工程、模型训练和评估,从而使他们能够获得有价值的见解并构建数据驱动的机器学习模型。

OSI PI Data Historian 用例

流程优化

OSI PI 可以通过提供来自传感器和其他来源的时间序列数据的实时洞察,帮助组织识别效率低下之处、监控性能并优化其工业流程。

预测性维护

通过分析历史数据并检测模式或异常,OSI PI 使组织能够实施预测性维护策略,从而减少设备停机时间和维护成本。

能源管理

OSI PI 可用于跟踪各种资产和流程的能源消耗,使组织能够确定需要改进的领域并实施节能措施。


DataBend 定价模型

作为一个开源项目,DataBend 可免费使用,无需任何许可费或订阅费用。用户可以在自己的基础设施上部署和管理 DataBend,或者选择使用流行的云提供商进行基于云的部署。DataBend 本身还提供托管云服务,并提供免费试用积分。

OSI PI Data Historian 定价模型

OSI PI 的定价通常基于多种因素的组合,例如数据源的数量、用户的数量以及所需的支持级别。定价详情未公开提供,因为它们是根据组织的具体需求在报价的基础上提供的。