在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,针对您的特定用例和数据模型,决定哪个数据库的优势最多,缺点最少,是一个重要的决定。下面您将找到 ClickHouse 和 DataBend 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。

本文的主要目的是比较 ClickHouse 和 DataBend 在涉及时间序列数据的工作负载方面的性能,而不是所有可能的用例。时间序列数据通常在数据库性能方面提出了独特的挑战。这是由于大量数据被写入以及访问这些数据的查询模式所致。本文并非旨在说明哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。

ClickHouse 与 DataBend 对比细分


 
数据库模型

列式数据库

数据仓库

架构

ClickHouse 可以部署在本地、云端或作为托管服务。

DataBend 可以在您自己的基础设施上运行,也可以使用托管服务。它被设计为云原生系统,旨在利用 AWS、Google Cloud 和 Azure 等云提供商提供的许多服务。

许可证

Apache 2.0

Apache 2.0

用例

实时分析、大数据处理、事件日志记录、监控、物联网、数据仓库

数据分析、数据仓库、实时分析、大数据处理

可扩展性

水平可扩展,支持分布式查询处理和并行执行

水平可扩展,支持分布式计算

正在寻找最有效率的入门方式?

无论您是在寻求成本节约、降低管理开销还是开源,InfluxDB 都能提供帮助。

ClickHouse 概览

ClickHouse 是一款开源列式数据库管理系统,专为高性能在线分析处理 (OLAP) 任务而设计。它由俄罗斯领先的技术公司 Yandex 开发。ClickHouse 以其能够实时处理大量数据、提供快速查询性能和实时分析而闻名。其列式存储架构实现了高效的数据压缩和更快的查询执行,使其适用于大规模数据分析和商业智能应用。

DataBend 概览

DataBend 是一个开源的云原生数据处理和分析平台,旨在为大数据工作负载提供高性能、经济高效且可扩展的解决方案。该项目由开发人员、研究人员和行业专业人士组成的社区推动,旨在创建一个统一的数据处理平台,将批处理和流处理能力与高级分析功能相结合。DataBend 的灵活架构允许用户构建广泛的应用,从实时分析到大规模数据仓库。


ClickHouse 用于时间序列数据

ClickHouse 可以有效地用于存储和分析时间序列数据,尽管它没有明确针对时间序列数据进行优化。虽然 ClickHouse 一旦摄入时间序列数据就可以非常快速地查询,但它在数据需要以较小批量摄入以便实时分析的极高写入场景中往往会遇到困难。

DataBend 用于时间序列数据

DataBend 的架构和处理能力使其成为处理时间序列数据的合适选择。它对批处理和流数据处理的支持允许用户大规模摄入、存储和分析时间序列数据。此外,DataBend 与 Apache Arrow 的集成及其强大的查询执行框架实现了对时间序列数据的高效查询和分析,使其成为需要实时洞察和分析的应用程序的多功能选择。


ClickHouse 关键概念

  • 列式存储:ClickHouse 以列式格式存储数据,这意味着每列的数据都单独存储。这实现了高效的压缩和更快的查询执行,因为在查询执行期间仅读取所需的列。
  • 分布式处理:ClickHouse 支持分布式处理,允许跨集群中的多个节点执行查询,从而提高查询性能和可扩展性。
  • 数据复制:ClickHouse 提供数据复制,以确保在硬件故障或节点中断情况下的数据可用性和容错能力。
  • 物化视图:ClickHouse 支持物化视图,它是作为表存储的预计算查询结果。物化视图可以显着提高查询性能,因为它们允许通过避免重新计算每个查询的结果来更快地检索数据。

DataBend 关键概念

  • DataFusion:DataFusion 是 DataBend 的核心组件,提供了一个可扩展的查询执行框架,该框架支持 SQL 和基于 DataFrame 的查询 API。
  • Ballista:Ballista 是 DataBend 内的分布式计算平台,构建于 DataFusion 之上,允许高效且可扩展地执行大规模数据处理任务。
  • Arrow:DataBend 利用 Apache Arrow,一种内存列式数据格式,以实现组件之间的高效数据交换并优化查询性能。


ClickHouse 架构

ClickHouse 的架构旨在支持对大型数据集进行高性能分析。ClickHouse 以列式格式存储数据。这实现了高效的数据压缩和更快的查询执行,因为在查询执行期间仅读取所需的列。ClickHouse 还支持分布式处理,这允许跨集群中的多个节点执行查询。ClickHouse 使用 MergeTree 存储引擎作为其主要表引擎。MergeTree 专为高性能 OLAP 任务而设计,并支持数据复制、数据分区和索引。

DataBend 架构

DataBend 构建于云原生分布式架构之上,该架构同时支持 NoSQL 和类 SQL 查询功能。其模块化设计允许用户根据其特定用例和需求选择和组合组件。DataBend 架构的核心组件包括 DataFusion、Ballista 和存储层。DataFusion 负责查询执行和优化,而 Ballista 支持大规模数据处理任务的分布式计算。DataBend 中的存储层可以配置为与各种存储后端一起工作,例如对象存储或分布式文件系统。

免费时间序列数据库指南

获取对备选方案和选择关键要求的全面回顾。

ClickHouse 功能

实时分析

ClickHouse 专为实时分析而设计,可以低延迟处理大量数据,提供快速的查询性能和实时洞察。

数据压缩

ClickHouse 的列式存储格式实现了高效的数据压缩,从而减少了存储需求并提高了查询性能。

物化视图

ClickHouse 支持物化视图,可以通过预计算并将查询结果存储为表来显着提高查询性能。

DataBend 功能

统一的批处理和流处理

DataBend 支持批处理和流数据处理,使用户能够构建各种需要实时或历史数据分析的应用程序。

可扩展的查询执行

DataBend 的 DataFusion 组件提供了一个强大且可扩展的查询执行框架,该框架支持 SQL 和基于 DataFrame 的查询 API。

可扩展的分布式计算

借助其 Ballista 计算平台,DataBend 能够跨分布式节点集群高效且可扩展地执行大规模数据处理任务。

灵活的存储

DataBend 的架构允许用户配置存储层以与各种存储后端一起工作,从而为不同的用例提供灵活性和适应性。


ClickHouse 用例

大规模数据分析

ClickHouse 的高性能查询引擎和列式存储格式使其适用于大规模数据分析和商业智能应用程序。

实时报告

ClickHouse 的实时分析能力使组织能够生成实时报告和仪表板,为决策提供最新的洞察。

日志和事件数据分析

ClickHouse 实时处理大量数据的能力使其成为日志和事件数据分析的合适选择,例如分析 Web 服务器日志或应用程序事件。

DataBend 用例

实时分析

DataBend 对流数据处理的支持及其强大的查询执行框架使其成为构建实时分析应用程序(例如日志分析、监控和异常检测)的合适选择。

数据仓库

凭借其可扩展的分布式计算能力和灵活的存储选项,DataBend 可用于构建大型数据仓库,这些数据仓库可以高效地存储和分析大量的结构化和半结构化数据。

机器学习

DataBend 处理大规模数据处理的能力及其对批处理和流数据的支持使其成为机器学习应用程序的绝佳选择。用户可以利用 DataBend 来预处理、转换和分析数据,以进行特征工程、模型训练和评估,从而使他们能够获得有价值的见解并构建数据驱动的机器学习模型。


ClickHouse 定价模型

ClickHouse 是一款开源数据库,可以部署在您自己的硬件上。ClickHouse 的开发人员最近还创建了 ClickHouse Cloud,这是一种用于部署 ClickHouse 的托管服务。

DataBend 定价模型

作为一个开源项目,DataBend 可以免费使用,无需任何许可费或订阅费用。用户可以在自己的基础设施上部署和管理 DataBend,或者选择使用流行的云提供商进行基于云的部署。DataBend 本身也提供托管云服务,并提供免费试用额度。