在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,为您的特定用例和数据模型决定哪个数据库具有最多的优势和最少的缺点是一个重要的决定。下面您将找到 Google BigQuery 和 Kdb 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。
本文的主要目的是比较 Google BigQuery 和 Kdb 在涉及时间序列数据的工作负载中的性能,而不是所有可能的用例。时间序列数据通常在数据库性能方面提出了独特的挑战。这是由于大量数据被写入以及访问该数据的查询模式。本文并非旨在说明哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。
Google BigQuery vs Kdb 细分
![]() |
![]() |
|
数据库模型 | 数据仓库 |
时间序列和列式数据库 |
架构 | BigQuery 是 Google Cloud Platform 提供的完全托管、无服务器数据仓库。它专为高性能分析而设计,并利用 Google 的基础设施进行数据处理。BigQuery 使用列式存储格式以实现快速查询,并支持标准 SQL。数据在 Google Cloud 区域内的多个可用区之间自动分片和复制 |
Kdb 可以部署在本地、云端或作为混合解决方案。 |
许可证 | 闭源 |
闭源 |
用例 | 商业分析、大规模数据处理、数据集成 |
高频交易、金融服务、市场数据分析、物联网、实时分析 |
可扩展性 | 无服务器、PB 级数据仓库,可以处理海量数据,无需预先进行容量规划 |
高度可扩展,支持多线程和多节点,适用于大规模数据处理 |
正在寻找最有效的入门方式?
无论您是寻求成本节约、更低的管理开销还是开源,InfluxDB 都能帮助您。
Google BigQuery 概览
Google BigQuery 是由 Google Cloud 开发的完全托管、无服务器数据仓库和分析平台。BigQuery 于 2011 年推出,旨在处理大规模数据处理和查询,使用户能够实时分析海量数据集。BigQuery 专注于性能、可扩展性和易用性,适用于广泛的数据分析用例,包括商业智能、日志分析和机器学习。
Kdb 概览
kdb+ 是由 Kx Systems 开发的高性能列式时间序列数据库。kdb+ 于 2003 年发布,旨在高效管理大量数据,主要关注金融数据,例如股票市场交易和报价。它基于 q 编程语言的原则构建,q 编程语言是 APL 和 K 的后代。该数据库以其速度、可扩展性以及处理实时和历史数据的能力而闻名。
Google BigQuery 用于时间序列数据
BigQuery 可以用于存储和分析时间序列数据,尽管它更侧重于传统的数据仓库用例。对于需要低延迟响应时间的用例,BigQuery 可能会遇到困难
Kdb 用于时间序列数据
kdb+ 旨在存储时间序列数据,使其自然适合需要高速查询和分析大量数据的应用程序。其列式存储格式允许对时间序列数据进行高效压缩和检索,而其 q 语言提供了强大而富有表现力的方式来操作和分析数据。kdb+ 在金融数据方面尤其强大,尽管它也可以用于其他类型的时间序列数据。
Google BigQuery 关键概念
与 Google BigQuery 相关的一些重要概念包括
- 项目:BigQuery 中的项目代表数据集、表和视图等资源的顶级容器。
- 数据集:数据集是 BigQuery 中表、视图和其他数据资源的容器。
- 表:表是 BigQuery 中的主要数据存储结构,由行和列组成。
- 架构:架构定义了表的结构,包括列名、数据类型和约束。
Kdb 关键概念
- q 语言:一种高级、特定领域的编程语言,用于在 kdb+ 中查询和操作数据。它结合了类似 SQL 的语法和函数式编程风格。
- 列式存储:kdb+ 以列而不是行的形式存储数据,这可以更快地查询和分析时间序列数据。
- 表:kdb+ 以表的形式存储数据,表类似于关系表,但侧重于列式存储和时间序列数据。
- 分散表:一种表存储格式,其中每列存储在单独的文件中,进一步提高了查询性能。
Google BigQuery 架构
Google BigQuery 的架构构建在 Google 的分布式基础设施之上,专为高性能和可扩展性而设计。在其核心,BigQuery 使用名为 Capacitor 的列式存储格式,该格式可实现高效的数据压缩和快速查询性能。数据自动分区并分布在多个存储节点上,从而提供高可用性和容错能力。BigQuery 的无服务器架构自动为查询和数据存储分配资源,从而消除了用户管理基础设施或容量规划的需求。
Kdb 架构
kdb+ 是一种列式时间序列数据库,它采用定制的数据模型,专为高效存储和查询时间序列数据而设计。它不使用传统的 SQL,而是依赖 q 语言进行查询和数据操作。kdb+ 的架构设计用于内存和磁盘存储,并能够跨多台机器水平扩展。kdb+ 的主要组件是数据库引擎、q 语言解释器和内置 Web 服务器。
免费时间序列数据库指南
获取对备选方案和选择关键要求的全面审查。
Google BigQuery 功能
列式存储
BigQuery 的列式存储格式 Capacitor 实现了高效的数据压缩和快速查询性能,使其适用于大规模数据分析。
与 Google Cloud 集成
BigQuery 与其他 Google Cloud 服务(如 Cloud Storage、Dataflow 和 Pub/Sub)无缝集成,从而可以轻松地从各种来源提取、处理和分析数据。
机器学习集成
BigQuery ML 使用户可以直接在 BigQuery 中创建和部署机器学习模型,从而简化了构建和部署机器学习应用程序的过程。
Kdb 功能
高性能
kdb+ 以其速度和性能而闻名,其列式存储格式和 q 语言允许快速查询和分析时间序列数据。
可扩展性
kdb+ 旨在水平扩展,使其适用于处理跨多台机器的大量数据。
q 语言
q 语言是一种功能强大、富有表现力的高级语言,用于在 kdb+ 中查询和操作数据。它结合了类似 SQL 的语法和函数式编程风格。
Google BigQuery 用例
商业智能和报告
BigQuery 广泛用于商业智能和报告,使用户能够分析大量数据并生成见解以指导决策。其快速的查询性能以及与流行的 BI 工具(如 Google Data Studio 和 Tableau)的无缝集成,使其成为此用例的理想解决方案。
机器学习和预测分析
BigQuery ML 使用户可以直接在 BigQuery 中创建和部署机器学习模型,从而简化了构建和部署机器学习应用程序的过程。BigQuery 的快速查询性能和对大规模数据处理的支持使其适用于预测分析用例。
数据仓库和 ETL
BigQuery 的分布式架构和列式存储格式使其成为数据仓库和 ETL(提取、转换、加载)工作流程的绝佳选择。它与其他 Google Cloud 服务(如 Cloud Storage 和 Dataflow)的无缝集成简化了从各种来源提取和处理数据的过程。
Kdb 用例
金融数据分析
kdb+ 广泛用于金融行业,用于存储和分析股票市场交易、报价和其他时间序列金融数据。
高频交易
kdb+ 是高频交易应用程序的热门选择,因为它具有高性能和处理大量实时数据的能力。
物联网和传感器数据
kdb+ 可用于存储和分析物联网设备和传感器生成的大量时间序列数据,尽管其主要重点仍然是金融数据。
Google BigQuery 定价模型
Google BigQuery 定价基于按需付费模式,费用取决于数据存储、查询和流式传输。BigQuery 定价主要有两个组成部分
- 存储定价:存储成本基于 BigQuery 中存储的数据量。用户需要为活动存储和长期存储付费,长期存储对于不经常访问的数据提供折扣价。
- 查询定价:查询成本基于查询期间处理的数据量。用户可以选择按需定价(按每次查询处理的数据量付费)或固定费率定价(为一定的查询容量提供固定的月度费用)。
Kdb 定价模型
kdb+ 是一种商业产品,定价取决于部署模型和使用的内核或服务器数量。Kx Systems 提供免费的 32 位 kdb+ 版本供非商业用途,但对可以使用的内存量有限制。对于商业部署和全功能版本,用户必须联系 Kx Systems 以获取定价详情。
免费开始使用 InfluxDB
InfluxDB Cloud 是开始存储和分析时间序列数据的最快方式。