在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,为您的特定用例和数据模型决定哪个数据库的优势最大、劣势最小,是一项重要的决策。下面您将找到 Google BigQuery 和 DuckDB 的关键概念、架构、特性、用例和定价模型的概述,以便您可以快速了解它们之间的比较。

本文的主要目的是比较 Google BigQuery 和 DuckDB 在涉及 时序数据 的工作负载中的性能,而不是针对所有可能的用例。时序数据通常在数据库性能方面提出独特的挑战。这是由于大量数据被写入以及访问这些数据的查询模式。本文并非旨在说明哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。

Google BigQuery 与 DuckDB 细分


 
数据库模型

数据仓库

列式数据库

架构

BigQuery 是 Google Cloud Platform 提供的完全托管、无服务器的数据仓库。它专为高性能分析而设计,并利用 Google 的基础设施进行数据处理。BigQuery 使用列式存储格式以实现快速查询,并支持标准 SQL。数据在 Google Cloud 区域内的多个可用区中自动分片和复制

DuckDB 旨在用作嵌入式数据库,主要关注单节点性能。

许可证

闭源

MIT

用例

商业分析、大规模数据处理、数据集成

嵌入式分析、数据科学、数据处理、ETL 管道

可扩展性

无服务器、PB 级数据仓库,可以处理海量数据,无需预先进行容量规划

嵌入式和单节点聚焦,对并行性的支持有限

正在寻找最有效的入门方式?

无论您是寻求成本节约、更低的运维开销还是开源,InfluxDB 都能帮到您。

Google BigQuery 概览

Google BigQuery 是由 Google Cloud 开发的完全托管、无服务器的数据仓库和分析平台。BigQuery 于 2011 年推出,旨在处理大规模数据处理和查询,使用户能够实时分析海量数据集。BigQuery 专注于性能、可扩展性和易用性,适用于广泛的数据分析用例,包括商业智能、日志分析和机器学习。

DuckDB 概览

DuckDB 是一种进程内 SQL OLAP(在线分析处理)数据库管理系统。它旨在简单、快速且功能丰富。DuckDB 可用于处理和分析表格数据集,例如 CSV 或 Parquet 文件。它提供丰富的 SQL 方言,支持事务、持久性、广泛的 SQL 查询以及对 Parquet 和 CSV 文件的直接查询。DuckDB 采用矢量化引擎构建,该引擎针对分析进行了优化,并支持并行查询处理。它旨在易于安装和使用,没有外部依赖项,并支持多种编程语言。


Google BigQuery 用于时序数据

BigQuery 可用于存储和分析时序数据,尽管它更侧重于传统的数据仓库用例。对于需要低延迟响应时间的用例,BigQuery 可能难以胜任

DuckDB 用于时序数据

DuckDB 可以有效地用于时序数据。它支持处理和分析表格数据集,其中可以包括存储在 CSV 或 Parquet 文件中的时序数据。凭借其优化的分析引擎和对复杂 SQL 查询的支持,DuckDB 可以高效地执行聚合、连接和其他时序分析操作。但是,重要的是要注意,DuckDB 并非专门为时序数据管理而设计,并且可能没有针对时序分析的专门功能,例如某些专用时序数据库。


Google BigQuery 关键概念

与 Google BigQuery 相关的一些重要概念包括

  • 项目:BigQuery 中的项目代表数据集、表和视图等资源的顶级容器。
  • 数据集:数据集是 BigQuery 中表、视图和其他数据资源的容器。
  • :表是 BigQuery 中的主要数据存储结构,由行和列组成。
  • 架构:架构定义表的结构,包括列名、数据类型和约束。

DuckDB 关键概念

  • 进程内:DuckDB 在进程内运行,这意味着它与使用它的应用程序在同一进程中运行,而无需单独的服务器。
  • OLAP:DuckDB 是一种 OLAP 数据库,这意味着它针对分析查询处理进行了优化。
  • 矢量化引擎:DuckDB 使用矢量化引擎,该引擎对批量数据进行操作,从而提高了查询性能。
  • 事务:DuckDB 支持事务操作,确保数据操作的原子性、一致性、隔离性和持久性 (ACID) 属性。
  • SQL 方言:DuckDB 提供丰富的 SQL 方言,具有高级功能,例如任意和嵌套的相关子查询、窗口函数、排序规则以及对数组和结构等复杂类型的支持


Google BigQuery 架构

Google BigQuery 的架构构建在 Google 的分布式基础设施之上,专为高性能和可扩展性而设计。在其核心,BigQuery 使用称为 Capacitor 的列式存储格式,该格式可实现高效的数据压缩和快速的查询性能。数据自动分区并分布在多个存储节点上,从而提供高可用性和容错能力。BigQuery 的无服务器架构自动为查询和数据存储分配资源,无需用户管理基础设施或容量规划。

DuckDB 架构

DuckDB 遵循进程内架构,与应用程序在同一进程中运行。它是一个面向关系的表型数据库管理系统,支持 SQL 查询以生成分析结果。DuckDB 使用 C++11 构建,旨在没有外部依赖项。它可以编译为单个文件,从而易于安装和集成到应用程序中。

免费时序数据库指南

获取关于替代方案和选择数据库的关键要求的全面评论。

Google BigQuery 特性

列式存储

BigQuery 的列式存储格式 Capacitor 实现了高效的数据压缩和快速的查询性能,使其适用于大规模数据分析。

与 Google Cloud 集成

BigQuery 与其他 Google Cloud 服务(例如 Cloud Storage、Dataflow 和 Pub/Sub)无缝集成,从而可以轻松地从各种来源摄取、处理和分析数据。

机器学习集成

BigQuery ML 使用户可以直接在 BigQuery 中创建和部署机器学习模型,从而简化了构建和部署机器学习应用程序的过程。

DuckDB 特性

事务和持久性

DuckDB 支持事务操作,确保数据完整性和持久性。它允许在会话之间持久存储数据。

广泛的 SQL 支持

DuckDB 提供丰富的 SQL 方言,支持高级查询功能,包括相关子查询、窗口函数和复杂数据类型。

直接 Parquet 和 CSV 查询

DuckDB 允许直接查询 Parquet 和 CSV 文件,从而可以高效分析以这些格式存储的数据。

快速分析查询

DuckDB 旨在高效运行分析查询,这归功于其矢量化引擎和针对分析工作负载的优化。

并行查询处理

DuckDB 可以并行处理查询,从而利用多核处理器来提高查询性能。


Google BigQuery 用例

商业智能和报告

BigQuery 广泛用于商业智能和报告,使用户能够分析大量数据并生成洞察力,为决策提供依据。其快速的查询性能以及与流行的 BI 工具(例如 Google Data Studio 和 Tableau)的无缝集成使其成为此用例的理想解决方案。

机器学习和预测分析

BigQuery ML 使用户可以直接在 BigQuery 中创建和部署机器学习模型,从而简化了构建和部署机器学习应用程序的过程。BigQuery 的快速查询性能和对大规模数据处理的支持使其适用于预测分析用例。

数据仓库和 ETL

BigQuery 的分布式架构和列式存储格式使其成为数据仓库和 ETL(提取、转换、加载)工作流的绝佳选择。它与其他 Google Cloud 服务(例如 Cloud Storage 和 Dataflow)的无缝集成简化了从各种来源摄取和处理数据的过程。

DuckDB 用例

处理和存储表格数据集

DuckDB 非常适合需要处理和存储表格数据集的场景,例如从 CSV 或 Parquet 文件导入的数据。它为处理结构化数据提供了高效的存储和检索机制。

交互式数据分析

DuckDB 非常适合交互式数据分析任务,尤其是在处理大型表时。它使您能够高效地执行复杂的运算,例如连接和聚合多个大型表,从而可以快速探索数据并从中提取洞察力。

将大型结果集传输到客户端

当您需要将大型结果集从数据库传输到客户端应用程序时,DuckDB 可能是一个合适的选择。其优化的查询处理和高效的数据传输机制实现了快速、无缝地检索大量数据。


Google BigQuery 定价模型

Google BigQuery 定价基于按需付费模式,费用由数据存储、查询和流式传输决定。BigQuery 定价主要有两个组成部分

  • 存储定价:存储成本基于 BigQuery 中存储的数据量。用户需要为活动存储和长期存储付费,长期存储对不常访问的数据提供折扣价。
  • 查询定价:查询成本基于查询期间处理的数据量。用户可以选择按需定价(按每次查询处理的数据付费)或统一费率定价(为一定量的查询容量提供固定的月费)。

DuckDB 定价模型

DuckDB 是一个免费且开源的数据库管理系统,根据宽松的 MIT 许可证发布。它可以免费使用、修改和分发,无需任何许可费用。