在构建任何软件应用程序时,选择合适的数据库至关重要。所有数据库在性能方面都有不同的优势和劣势,因此,针对您的特定用例和数据模型,决定哪个数据库的优势最大、缺点最少是一项重要的决策。下面您将找到 Amazon Timestream for LiveAnalytics 和 Google BigQuery 的关键概念、架构、功能、用例和定价模型的概述,以便您可以快速了解它们之间的比较。

本文的主要目的是比较 Amazon Timestream for LiveAnalytics 和 Google BigQuery 在涉及时间序列数据的工作负载中的性能,而不是所有可能的用例。时间序列数据通常在数据库性能方面提出了独特的挑战。这是由于正在写入的大量数据以及访问该数据的查询模式。本文并非旨在论证哪个数据库更好;它只是提供了每个数据库的概述,以便您可以做出明智的决定。

Amazon Timestream for LiveAnalytics 与 Google BigQuery 分解


 
数据库模型

时间序列数据库

数据仓库

架构

Timestream 是一种完全托管的、无服务器的时间序列数据库服务,仅在 AWS 上可用。

BigQuery 是 Google Cloud Platform 提供的完全托管的、无服务器的数据仓库。它专为高性能分析而设计,并利用 Google 的基础设施进行数据处理。BigQuery 使用列式存储格式进行快速查询,并支持标准 SQL。数据在 Google Cloud 区域内的多个可用区之间自动分片和复制

许可证

闭源

闭源

用例

物联网、DevOps、时间序列分析

商业分析、大规模数据处理、数据集成

可扩展性

无服务器且自动可扩展,无需人工干预即可处理摄取、存储和查询工作负载

无服务器、PB 级数据仓库,可以处理海量数据,无需预先进行容量规划

正在寻找最有效率的入门方式?

无论您是寻求节省成本、降低管理开销还是开源,InfluxDB 都能提供帮助。

Amazon Timestream for LiveAnalytics 概述

Timestream for LiveAnalytics 是 AWS 开发的完全托管的、无服务器的时间序列数据库服务。Amazon Timestream for LiveAnalytics 于 2020 年推出,专为处理时间序列数据而设计,使其成为物联网、监控和分析应用程序的理想选择,这些应用程序需要高摄取率、高效存储和快速查询功能。作为 AWS 生态系统的一部分,Timestream for LiveAnalytics 可以轻松地与其他 AWS 服务集成,从而简化了在云中构建和部署时间序列应用程序的过程。AWS 还提供 Timestream for InfluxDB,它是 InfluxDB 的托管版本,与 InfluxDB 2.x API 兼容,并与 InfluxData 合作发布

Google BigQuery 概述

Google BigQuery 是 Google Cloud 开发的完全托管的、无服务器的数据仓库和分析平台。BigQuery 于 2011 年推出,旨在处理大规模数据处理和查询,使用户能够实时分析海量数据集。BigQuery 专注于性能、可扩展性和易用性,适用于广泛的数据分析用例,包括商业智能、日志分析和机器学习。


Amazon Timestream for LiveAnalytics 用于时间序列数据

Amazon Timestream for LiveAnalytics 专为处理时间序列数据而设计,使其成为需要高摄取率和高效存储的各种应用程序的合适选择。其双层存储架构,包括内存存储和磁盘存储,允许用户根据数据年龄和访问模式管理数据保留并优化存储成本。此外,Timestream 支持类似 SQL 的查询,并与流行的分析工具集成,使用户可以轻松地从其时间序列数据中获得洞察。

Google BigQuery 用于时间序列数据

BigQuery 可以用于存储和分析时间序列数据,尽管它更侧重于传统的数据仓库用例。对于需要低延迟响应时间的用例,BigQuery 可能会遇到困难


Amazon Timestream for LiveAnalytics 关键概念

  • 内存存储:在 Amazon Timestream for LiveAnalytics 中,内存存储是一个组件,用于在内存中存储最近的、可变的时间序列数据,以便进行快速查询和分析。
  • 磁盘存储:Amazon Timestream for LiveAnalytics 中的磁盘存储负责在磁盘上存储历史的、不可变的时间序列数据,以实现经济高效的长期存储。
  • 生存时间 (TTL):Amazon Timestream for LiveAnalytics 允许用户在其时间序列数据上设置 TTL,这决定了数据在内存存储中保留多长时间后才会被移动到磁盘存储或删除。

Google BigQuery 关键概念

与 Google BigQuery 相关的一些重要概念包括

  • 项目:BigQuery 中的项目代表资源的顶级容器,例如数据集、表和视图。
  • 数据集:数据集是 BigQuery 中表、视图和其他数据资源的容器。
  • :表是 BigQuery 中的主要数据存储结构,由行和列组成。
  • 模式:模式定义了表的结构,包括列名、数据类型和约束。


Amazon Timestream for LiveAnalytics 架构

Amazon Timestream for LiveAnalytics 构建在无服务器、分布式架构之上,该架构支持类似 SQL 的查询功能。其数据模型专为时间序列数据量身定制,使用带时间戳的记录和灵活的模式,可以适应不同的数据粒度和维度。Timestream 架构的核心组件包括内存存储和磁盘存储,它们共同管理数据保留、存储和查询。内存存储针对最近数据的快速查询进行了优化,而磁盘存储为历史数据提供了经济高效的长期存储。

Google BigQuery 架构

Google BigQuery 的架构构建在 Google 的分布式基础设施之上,专为高性能和可扩展性而设计。在其核心,BigQuery 使用名为 Capacitor 的列式存储格式,该格式可实现高效的数据压缩和快速的查询性能。数据自动分区并分布在多个存储节点上,从而提供高可用性和容错能力。BigQuery 的无服务器架构自动为查询和数据存储分配资源,从而无需用户管理基础设施或容量规划。

免费时间序列数据库指南

获取对备选方案和选择关键要求的全面审查。

Amazon Timestream for LiveAnalytics 功能

无服务器架构

Amazon Timestream for LiveAnalytics 无服务器架构消除了用户管理或配置基础设施的需求,使其易于扩展并降低了运营开销。

双层存储

Timestream 的双层存储架构,包括内存存储和磁盘存储,可根据数据年龄和访问模式自动管理数据保留并优化存储成本。

类似 SQL 的查询

Amazon Timestream for LiveAnalytics 支持类似 SQL 的查询,并与流行的分析工具集成,使用户可以轻松地从其时间序列数据中获得洞察。

Timestream for InfluxDB

对于需要近实时查询且延迟为单毫秒的工作负载,AWS 建议使用 Timestream for InfluxDB 而不是 LiveAnalytics。Timestream for InfluxDB 还为希望使用 AWS 托管服务而无需更新其代码的用户提供与 InfluxDB API 的兼容性。

Google BigQuery 功能

列式存储

BigQuery 的列式存储格式 Capacitor 实现了高效的数据压缩和快速的查询性能,使其适用于大规模数据分析。

与 Google Cloud 集成

BigQuery 与其他 Google Cloud 服务(例如 Cloud Storage、Dataflow 和 Pub/Sub)无缝集成,从而可以轻松地从各种来源摄取、处理和分析数据。

机器学习集成

BigQuery ML 使​​用户可以直接在 BigQuery 中创建和部署机器学习模型,从而简化了构建和部署机器学习应用程序的过程。


Amazon Timestream for LiveAnalytics 用例

物联网应用

Amazon Timestream for LiveAnalytic 对高摄取率和高效存储的支持使其成为监控和分析来自物联网设备(例如传感器和智能家电)的数据的理想选择。

DevOps

LiveAnalytics 可用于一般的 DevOps 工作负载,例如监控应用程序的健康状况和利用率。对于需要尽可能低延迟的实时监控的用例,AWS 建议使用 Timestream for InfluxDB。

分析

Amazon Timestream for LiveAnalytics 可用于跟踪分析数据,例如 Web 和应用程序数据。然后,可以使用内置的时间序列分析功能来聚合和分析数据,从而以更高的开发者生产力获得有价值的见解。

Google BigQuery 用例

商业智能和报告

BigQuery 广泛用于商业智能和报告,使用户能够分析大量数据并生成见解以用于辅助决策。其快速的查询性能以及与流行的 BI 工具(例如 Google Data Studio 和 Tableau)的无缝集成使其成为此用例的理想解决方案。

机器学习和预测分析

BigQuery ML 使​​用户可以直接在 BigQuery 中创建和部署机器学习模型,从而简化了构建和部署机器学习应用程序的过程。BigQuery 快速的查询性能和对大规模数据处理的支持使其适用于预测分析用例。

数据仓库和 ETL

BigQuery 的分布式架构和列式存储格式使其成为数据仓库和 ETL(提取、转换、加载)工作流程的绝佳选择。它与其他 Google Cloud 服务(例如 Cloud Storage 和 Dataflow)的无缝集成简化了从各种来源摄取和处理数据的过程。


Amazon Timestream for LiveAnalytics 定价模型

Amazon Timestream for LiveAnalytics 提供按需付费定价模型,该模型基于数据摄取、存储和查询执行。摄取成本由摄取到 Timestream 中的数据量决定,而存储成本则基于内存存储和磁盘存储中存储的数据量。查询执行成本根据查询执行期间扫描和处理的数据量计算。Timestream 还为用户提供免费套餐,以探索该服务并构建概念验证应用程序,而无需产生费用。

Google BigQuery 定价模型

Google BigQuery 定价基于按需付费模型,成本由数据存储、查询和流式传输决定。BigQuery 定价主要有两个组成部分

  • 存储定价:存储成本基于 BigQuery 中存储的数据量。用户需要为活动存储和长期存储付费,长期存储对于不经常访问的数据提供折扣价。
  • 查询定价:查询成本基于查询期间处理的数据量。用户可以选择按需定价(按每次查询处理的数据付费)或固定费率定价(为一定量的查询容量提供固定的月度费用)。